Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Probing Unconventional Transport Regimes in Delafossite Metals

Probing Unconventional Transport Regimes in Delafossite Metals

Philippa H. McGuinness

 

Verlag Springer-Verlag, 2022

ISBN 9783031142444 , 140 Seiten

Format PDF

Kopierschutz Wasserzeichen

Geräte

96,29 EUR

Mehr zum Inhalt

Probing Unconventional Transport Regimes in Delafossite Metals


 

This thesis describes in-depth studies of the remarkable electronic transport within the ultrahigh conductivity delafossite metals PtCoO_2 and PdCoO_2 using the tool of focused ion beam (FIB) microstucturing. Despite being first synthesised over 50 years ago, important questions remain regarding both the origin of the unusually high conductivity of these compounds and the consequences of their unique properties for unconventional electronic transport, such as that within the ballistic regime. The thesis explores both these areas.
High-energy electron irradiation is used to examine the effects of deliberately introducing point defects into PdCoO_2 and PtCoO_2, demonstrating that the extremely low resistivity of these materials stems from an extreme purity as high as 1 defect in 120,000 atoms, rather than a novel scattering suppression mechanism. In addition, studies of the electronic transport in micron-scale squares of these metals show that their broadly hexagonal Fermi surfaces lead not only to long range ballistic behaviour but novel ballistic regime phenomena which cannot be observed in materials with a higher-symmetry Fermi surface.


Philippa McGuinness received an MPhys in Physics from the University of Manchester, UK in 2016 and completed her PhD in 2021 as a member of the Scottish Doctoral Training Centre in Condensed Matter Physics, working between the Max Planck Institute for the Chemical Physics of Solids in Dresden, Germany and the University of St Andrews in Scotland, studying the electrical transport of two highly conductive delafossite metals using the tool of focused ion beam microstructuring.