Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

A Holistic Approach to Ship Design - Volume 1: Optimisation of Ship Design and Operation for Life Cycle

A Holistic Approach to Ship Design - Volume 1: Optimisation of Ship Design and Operation for Life Cycle

Apostolos Papanikolaou

 

Verlag Springer-Verlag, 2018

ISBN 9783030028107 , 501 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

181,89 EUR

Mehr zum Inhalt

A Holistic Approach to Ship Design - Volume 1: Optimisation of Ship Design and Operation for Life Cycle


 

Preface

5

Contents

9

Editor and Contributors

11

Abbreviations

15

1 Introduction to the HOLISHIP Project

21

1.1 Historical Review

21

1.2 The HOLISHIP Project

24

References

27

2 Holistic Ship Design Optimisation

29

2.1 Introduction to Holistic Ship Design Optimisation

30

2.2 The Evolution of the Holistic Approach to Ship Design

33

2.3 The Generic Ship Design Optimisation Problem

35

2.4 Optimisation of Tanker Design

37

2.4.1 Multi-objective AFRAMAX Tanker Design

38

2.4.2 The Design Approach

41

2.4.3 Tank Arrangement

43

2.4.4 Structural Model

44

2.4.5 Analyses and Simulations

46

2.5 Discussion of Results

49

2.5.1 Exploration

49

2.5.2 Refinements

51

2.5.3 Sensitivities

52

2.5.4 The RFR-OOI Sensitivity Study

54

2.6 Conclusions

55

References

56

3 On the History of Ship Design for the Life Cycle

63

3.1 Introduction

64

3.2 Ship Design Decision Models

65

3.2.1 Ship Design as Optimization

65

3.2.2 The Stagewise Structure of the Ship Design Process

65

3.2.3 The Generic Ship Design Model

67

3.3 Specific Cases of Ship Design Optimization Studies

68

3.3.1 Generations of Ship Design Models

68

3.3.2 Synthesis Models

70

3.3.3 Multiobjective Models

72

3.3.4 Holistic Design Models

78

3.3.5 Risk-Based Design Models

85

3.4 Conclusions

89

References

91

4 Market Conditions, Mission Requirements and Operational Profiles

94

4.1 Introduction

95

4.1.1 RoPAX

96

4.1.2 Double-Ended Ferry

97

4.1.3 Offshore Support Vessel

98

4.2 Market Analysis of the RoPAX Vessel Segment

99

4.2.1 Introduction

99

4.2.2 The RoPAX Vessel Segment

100

4.2.3 The Double-Ended Ferries Market Segment

103

4.2.4 Conclusions for the Future Development in the RoPAX Vessel Segment (Including DE Ferries)

104

4.3 Mission Requirement

106

4.3.1 Transport Task

106

4.3.2 Defining the Vessel

107

4.4 Initial Sizing

107

4.4.1 Definition of Concept Design

108

4.4.2 Regression Analysis

108

4.4.3 Other Stakeholders and Their Impact

110

4.5 Operational Profiles

111

4.5.1 Other Stakeholders and Their Impact

111

4.5.2 Operational Profiling Tool—Input

112

4.5.3 Operational Profiling Tool—Simulation

113

4.5.4 Operational Profiling Tool—Results: RoPAX Application Case

115

4.5.5 Operational Profiling Tool—Results: DE Ferry Application Case

117

4.5.6 Operational Profiling Tool—Results: OSV Application Case

122

4.5.7 Operational Profiling Tool—Discussion

130

4.6 Designing a Ship Concept for a Given Task by the Use of the Intelligent GA

130

4.6.1 Design Tool Requirements

131

4.6.2 3D General Arrangement in Concept Phase of Design

132

4.6.3 Intelligent GA Tool

133

4.6.4 Internal Modules

135

4.6.5 Linked Modules

137

4.6.6 Optimisation Platform Integration

138

References

139

5 Systemic Approach to Ship Design

141

5.1 Ship Design Driven by Operational Scenarios

142

5.1.1 Operational Scenarios as a Complement to Technical Requirements

142

5.1.2 Technical Requirements

142

5.1.3 Inferring Operational Scenarios from Requirements

144

5.2 Modelling the System Architecture of the Ship

145

5.2.1 A Multi-level Architecture Model

145

5.2.2 Architecture Analysis—Circuits and Networks, Functional Chains

147

5.2.3 System Architecture as the Basis for Performance and RAM Analysis

148

5.3 Managing the Design Process with “Communities of Interest”

149

5.3.1 Ship Design: A Collaborative Design Process

149

5.3.2 Collaborative Software Architectures

151

5.3.3 Architecture of the SAR Tool

152

5.3.4 A Human-Centred Design Process

153

References

155

6 Hydrodynamic Tools in Ship Design

157

6.1 Hydrodynamic Challenges in Ship Design

158

6.1.1 Ship Resistance

159

6.1.2 Propulsion

166

6.1.3 Seakeeping

168

6.1.4 Manoeuvring

169

6.2 Different Types of Hydrodynamic Tools

171

6.2.1 Fundamental Considerations

172

6.2.2 Empirical Tools

174

6.2.3 Potential Flow Codes

175

6.2.4 Viscous Flow Codes

185

6.3 Simulation-Based Design Optimisation and Adaptive Multi-fidelity Metamodelling

196

6.3.1 Local Hybridisation of Deterministic Derivative-Free Global Algorithms

197

6.3.2 Adaptive Multi-fidelity Metamodelling

202

6.4 The HOLISHIP Integration Concept (for CFD Codes): Hydrodynamic Optimisation of a RoPAX Ferry

209

6.4.1 Hydrodynamics

210

6.4.2 Hullform

211

6.4.3 Organising Computations

212

6.4.4 Results

213

6.4.5 Discussion

218

6.5 Conclusions

219

References

221

7 Parametric Optimisation in Concept and Pre-contract Ship Design Stage

226

7.1 Introduction

227

7.2 Parametric Concept Design Optimisation

228

7.2.1 Optimisation Approach

229

7.2.2 Formulation of Early Concept Design Problem

230

7.2.3 Adaptation of Tools

232

7.2.4 Application Example

245

7.3 Parametric Ship Design and Optimisation in the Pre-contract Stage

246

7.3.1 Parametric Modelling of Hull Form and Watertight Subdivision

248

7.3.2 Assessment Tools

250

7.3.3 Surrogate Models

251

7.3.4 Formulation of a Sample Optimisation Problem

253

7.3.5 Results and Discussion

256

References

260

8 CAESES—The HOLISHIP Platform for Process Integration and Design Optimization

263

8.1 Introduction and Motivation

264

8.2 Process Integration and Design Optimization

266

8.2.1 Overview

266

8.2.2 Background

266

8.2.3 Overview of Intrinsic CAESES Functionality

267

8.2.4 Integration Approach Taken in HOLISHIP on the Basis of CAESES

268

8.2.5 Encapsulating Tools

270

8.3 Variable Geometry

273

8.3.1 Geometric Modeling

273

8.3.2 A RoPAX Ferry as an Example of Fully Parametric Modeling

275

8.3.3 An OSV as an Example of Partially Parametric Modeling

279

8.4 Data Management

281

8.4.1 Hierarchical Models

281

8.4.2 Parameters Versus Free Variables

284

8.4.3 Bottom-Up Approach for Integration

284

8.4.4 Conversion and Enrichment of Data

285

8.5 Software Connection

287

8.5.1 Software Connector

287

8.5.2 Integration of a Single Tool

289

8.5.3 Integration of Several Tools

289

8.5.4 Connection with Other Frameworks

290

8.6 Optimization

292

8.6.1 Overview

292

8.6.2 Exploration

293

8.6.3 Exploitation

294

8.6.4 Assessments

296

8.7 Direct Simulation Versus Surrogate Models

298

8.7.1 Idea of Surrogate Modeling

298

8.7.2 Typical Surrogate Models

299

8.7.3 Using Surrogate Models

300

8.8 Scenarios of Application

302

8.8.1 Manual Versus Automated Design

302

8.8.2 Offers via WebApps

303

8.9 Outlook

305

8.9.1 Meta-Projects

305

8.9.2 Community of Providers, Consultants and Users

305

8.10 Conclusions

306

References

307

9 Structural Design Optimization—Tools and Methodologies

310

9.1 Introduction

311

9.2 Trends in Optimization Methodologies

313

9.3 Optimization Tools

316

9.4 Quality Assessment of the Pareto Solutions

317

9.5 LBR-5: A Least Cost Structural Optimization Method

321

9.6 BESST Project

322

9.6.1 Motivation

322

9.6.2 Model for Study

324

9.6.3 Optimization Workflow Description

324

9.6.4 Results and Discussion

326

9.7 HOLISHIP Project

327

9.7.1 Presentation

327

9.7.2 Methodology

329

9.7.3 Concept Design Phase

330

9.7.4 Contract Design Phase

330

9.8 Efficient Tools for Ship and Offshore Structure Optimization in Collision Scenarios

332

9.8.1 Summary

332

9.8.2 Response Surface Method (RSM)

333

9.8.3 Analytical Method

335

9.8.4 Future Scope for Optimization Tools

337

9.9 Conclusions

337

References

338

10 Design for Modularity

343

10.1 Introduction to Design for Modularity

344

10.2 Defining and Delimiting Modularity

344

10.2.1 A Modular or an Integral Product Architecture?

345

10.2.2 Related Concepts

347

10.2.3 Modularity Types

347

10.3 Modularity in the Design Phase

350

10.3.1 Supporting a Product Platform Strategy

350

10.3.2 Design Process Efficiency by Configuration-Based Design Based on Modularity

351

10.3.3 Modularity Supporting Design Exploration and Innovation

354

10.3.4 Modularity in Ship Design—Summarized

358

10.4 Modularization in Ship Production

358

10.4.1 Effects on the Ship Production Value Chain

359

10.4.2 Early Outfitting

359

10.5 Modularity in Operation

361

10.5.1 Modularity for Flexibility in Operation

362

10.5.2 Modularity for Easy Retrofit and Modernization

364

10.5.3 Design Methods for Modular Adaptation in Operation

365

10.6 Conclusions

368

References

368

11 Application of Reliability, Availability and Maintenance Principles and Tools for Ship Design

371

11.1 Description of RAM Objectives and Methodology

372

11.1.1 RAM Objectives

372

11.1.2 RAM Methodology

373

11.2 RAM Applications

373

11.2.1 Aircraft Industry

373

11.2.2 Railway Industry

373

11.2.3 Oil and Gas/Offshore Industry

374

11.2.4 Defence Industry

374

11.2.5 Energy Industry

374

11.2.6 Process Industry

375

11.3 Motivation for RAM Analysis in Ship Design

375

11.3.1 Current Situation and Trends

375

11.3.2 Expected Benefit of RAM at Early Ship Design Stage

376

11.3.3 Main Target Ship Types for RAM Analyses

377

11.4 Specificities of Ship Design from RAM Analysis Point of View

377

11.5 Main Ship Systems for RAM Analysis

379

11.6 RAM Study

380

11.6.1 RAM Study Process

380

11.6.2 Criticality Analysis

380

11.6.3 Reliability Data Collection

381

11.6.4 RAM Assumptions

381

11.6.5 RAM Modelling, Simulation and Calculation

381

11.6.6 Results Generation

382

11.7 RAM Modelling

383

11.7.1 Boolean Formalisms

383

11.7.2 States/Transitions Formalisms

384

11.7.3 Model-Based Models

386

11.7.4 Most Suitable Modelling for Ship Design

388

11.8 Main Required Functionalities of RAM Tools

388

11.8.1 Step-by-Step Analysis for Verification

389

11.8.2 Type of Calculation

389

11.8.3 Results

390

11.8.4 Sensitivities

391

11.8.5 Life-Cycle Cost (LCC) Calculations

391

11.9 Reliability Data for RAM Analysis

391

11.10 Conclusions

393

References

393

12 Life Cycle Performance Assessment (LCPA) Tools

396

12.1 Introduction

397

12.2 Methodologies for the Assessment

398

12.2.1 Life Cycle Costing (LCC)

398

12.2.2 Life Cycle Assessment (LCA)

400

12.2.3 LCC and LCA in the Shipping Sector

400

12.2.4 Cost Estimation Methods and Adoption of KPIs

401

12.3 End-of-Life Phase

403

12.3.1 Alternatives for End-of-Life Phase

403

12.3.2 KPI Inputs for End-of-Life Assessment

405

12.3.3 Data Required for End-of-Life Assessment

405

12.3.4 Energy-Economic Evaluation of End-of-Life Procedures

407

12.3.5 International Regulation

408

12.4 A Selection of KPIs for an Holistic Approach

409

12.5 A Methodology for an Holistic Approach

413

12.6 LCPA and KPIs Calculation

417

12.7 Consideration of Uncertainties

420

12.8 Conclusions and Comments on Application Cases

422

References

422

13 Modelling and Optimization of Machinery and Power System

426

13.1 Introduction

426

13.2 Definition/Composition of Machinery and Power System

427

13.3 Holistic Approach to Power System Modelling

430

13.4 Optimization and Verification of Power System Concept Design

433

13.5 Application Example

442

13.6 Conclusions

442

References

443

14 Advanced Ship Machinery Modeling and Simulation

445

14.1 Marine Energy Systems: Need for an Integrated Approach

446

14.2 Process Modeling and Simulation

447

14.2.1 Types of Problems and Application Areas

447

14.2.2 Generic Problem Description/Workflow

449

14.3 Mathematical Formulation of the Process Modeling Framework

451

14.3.1 Conservation Equations and Physical Phenomena

451

14.3.2 Connectivity Equations

454

14.3.3 Thermophysical Properties

454

14.4 Individual Component Models and Processes Library

455

14.4.1 Model Libraries

455

14.4.2 Primary Energy Converters

455

14.4.3 Secondary Energy Converters

456

14.4.4 Flow Transport Equipment

457

14.4.5 Heat Exchange and Phase Separation

458

14.4.6 Electrical System Components

458

14.4.7 Control and Automation

458

14.4.8 Power Flow

459

14.4.9 Mass Separation and (Bio) Chemical Reactors

459

14.5 Integration with Other Software Platforms

459

14.5.1 Objective

459

14.5.2 Building a Model with Exchange and Co-simulation Capabilities

460

14.6 Illustrative Applications

461

14.6.1 Hybrid-Electric Propulsion Systems

461

14.6.2 Desulfurization Scrubbers

464

14.6.3 LNG Carrier Newbuilding Configuration Alternatives

467

14.6.4 COSSMOS Use Under an Integration Platform for the HOLISHIP Project

470

14.7 Conclusions

473

References

474

15 HOLISPEC/RCE: Virtual Vessel Simulations

477

15.1 Introduction

478

15.2 Why Do We Need Coupled Simulations?

479

15.3 Simulations in Concept Design

482

15.3.1 Introduction

482

15.3.2 Data Representation and Exchange

482

15.4 Simulation in Design Verification

483

15.5 Available Tools and Frameworks

484

15.5.1 RCE and CPACS

484

15.5.2 Holispec

485

15.6 Applications and Case Studies

489

15.6.1 Concept Testing

489

15.6.2 Virtual Sea Trials

491

15.6.3 Coupled Simulations

491

15.6.4 Simulations in Concept Design: A Case Study

492

15.7 Conclusions and Way Ahead

496

References

496

Terminology of Some Used Important Notions

498