Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

OpenFOAM® - Selected Papers of the 11th Workshop

OpenFOAM® - Selected Papers of the 11th Workshop

J. Miguel Nóbrega, Hrvoje Jasak

 

Verlag Springer-Verlag, 2019

ISBN 9783319608464 , 527 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

213,99 EUR

Mehr zum Inhalt

OpenFOAM® - Selected Papers of the 11th Workshop


 

Preface

5

Contents

7

Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure

11

1 Introduction

12

2 Mathematical Model

13

2.1 Fluid Governing Equations

13

2.2 Solid Governing Equations

14

2.3 Conditions at the Fluid–Solid Interface

15

2.4 Robin Boundary Condition for Pressure

16

3 Numerical Model

18

3.1 Discretisation of the Computational Domain

18

3.2 Discretisation of the Governing Equations

19

3.3 Solution Procedure for Fluid and Solid Models

23

3.4 Solution Procedure for Fluid–Structure Interaction

23

4 Numerical Results

25

4.1 Wave Propagation in an Elastic Tube

25

4.2 Enclosed Domain: A Balloon-Type Problem

29

5 Conclusions

30

References

31

CAD-Based Parameterization for Adjoint Optimization

33

1 Introduction

33

1.1 Boundary Representation

34

1.2 NURBS Curves and Surfaces

35

1.3 Connecting CAD to CFD

36

2 Meshing of the CAD Surfaces

37

2.1 Using Dimensionless Parameters

37

2.2 Using an Octree Mesh as a Background Mesh

38

2.3 Using the Advancing Front Method for Meshing the Surfaces

38

3 Changing the Shape of BRep Models

39

3.1 Adjoint-Based Optimization and the Continuous Adjoint Technique

42

3.2 Volumetric NURBS Free Form Deformation

44

3.3 Fitting the Displaced Surface Mesh

44

4 Conclusions

46

References

47

Cavitating Flow in a 3D Globe Valve

49

1 Introduction

49

2 Numerical Approach

50

2.1 Governing Equations

50

2.2 Cavitation Model

51

2.3 Turbulence Model

52

2.4 Computational Domain

53

2.5 Numerical Methodology

54

3 Results

55

3.1 Operating Conditions

55

3.2 Influence of Turbulence on pv

56

3.3 Flow Topology

56

3.4 Flow Curve

57

3.5 Forces on the Stem

58

4 Conclusions

59

References

59

CFD Analysis and Optimisation of Tidal Turbine Arrays Using OpenFOAM®

61

1 Introduction

61

1.1 Esturine Tidal Energy

62

1.2 Lift/Drag Turbine

63

1.3 Project Aims

64

2 Detailed CFD

65

3 Immersed Body Force Method

67

3.1 Validation

68

3.2 Farm Modelling

70

4 Optimisation

70

5 Conclusions

73

References

73

Combining an OpenFOAM®-Based Adjoint Solver with RBF Morphing for Shape Optimization Problems on the RBF4AERO Platform

75

1 Introduction

76

2 Continuous Adjoint Formulation

77

3 RBF-Based Morphing

80

4 Optimization Algorithm

81

5 Applications

82

6 Conclusions

84

References

85

Development of a Combined Euler-Euler Euler-Lagrange Slurry Model

86

1 Introduction

87

2 Current OpenFOAM Models

88

3 Solver Development

88

3.1 Mesh/Baffles/Regions

89

3.2 Interpolation

90

3.3 Addition of Particles to the Solver

92

4 Initial Test of Model

93

4.1 First Phase Velocity Comparison

94

4.2 Particle Comparison

97

5 Future Development and Conclusion

98

References

98

Development of Data-Driven Turbulence Models in OpenFOAM®: Application to Liquid Fuel Nuclear Reactors

101

1 Introduction

102

2 Application of State-of-the-Art Turbulence Models for the BFS

103

3 Optimization of a k–? Model with GEATFOAM

109

4 A Nonlinear Quadratic Closure for the Anisotropy Tensor Developed with the GEATFOAM Tool

111

5 Conclusions

113

References

115

Differential Heating as a Strategy for Controlling the Flow Distribution in Profile Extrusion Dies

117

1 Introduction

117

2 Die-Design Methodology

118

3 Numerical Modeling

120

3.1 Governing Equations

120

4 Case Study

121

4.1 Material Characterization

122

4.2 Geometry and Mesh

122

4.3 Numerical Trials and Results

124

4.4 Experimental Assessment

126

5 Conclusions

127

References

127

Drag Model for Coupled CFD-DEM Simulations of Non-spherical Particles

129

1 Introduction

129

2 Modeling of Non-spherical Particles

130

2.1 Drag Forces on Non-spherical Particles

130

3 Drag Model Development

133

4 Application

136

5 Conclusions

138

References

138

Effects of Surface Textures on Gravity-Driven Liquid Flow on an Inclined Plate

140

1 Introduction

140

2 Numerical Model

143

2.1 Model Equations

143

2.2 Computational Domain and Simulation Set-Up

144

3 Results and Discussion

147

4 Conclusion

150

References

151

Enhanced Turbomachinery Capabilities for Foam-Extend: Development and Validation

152

1 Introduction

153

2 Mathematical Model

154

3 Validation and Discussion

155

3.1 Aachen Test Case: Partial Overlap GGI Approach

156

3.2 Aachen Test Case: Mixing Plane Approach

156

3.3 Global Pump Parameters Comparison

158

4 Conclusion

160

References

161

Evaluation of Energy Maximising Control Systems for Wave Energy Converters Using OpenFOAM®

163

1 Introduction

163

1.1 Outline of Chapter

164

2 OpenFOAM® in Wave Energy Applications

165

3 Evaluating Energy Maximisation Control Systems

167

4 Illustrative Example

168

4.1 Implementation

169

4.2 Results

171

5 Conclusion

174

References

175

Floating Potential Boundary Condition in OpenFOAM®

178

1 Introduction

178

2 Theoretical Background

179

3 Implementation in OpenFOAM®

183

4 Examples

183

5 Conclusions

185

References

185

Fluid Dynamic and Thermal Modeling of the Injection Molding Process in OpenFOAM®

187

1 Introduction

187

2 Governing Equations

188

2.1 Fluid Dynamic Equations

188

2.2 Thermal Modeling

189

2.3 Multiphase Modeling

190

2.4 Material Models

191

2.5 Modeling Processing Steps of Injection Molding

192

3 Experiments

193

3.1 Processing Conditions

193

3.2 Measurement Errors

194

4 Validation

195

4.1 Filling Phase

195

4.2 Packing Phase

196

4.3 Cooling Phase

196

4.4 Parameter study

198

5 Conclusion

198

References

199

Free-Surface Dynamics in Induction Processing Applications

201

1 Introduction

201

2 Magnetodynamics

202

3 Hydrodynamics

204

4 Mesh Motion

205

5 Multi-mesh Multi-physics

206

5.1 Parallelisation

207

5.2 Magnetohydrodynamic Solution

207

5.3 Improved Surface-Tracking Method

209

6 Application Examples

211

7 Conclusion

213

References

213

GEN-FOAM: An OpenFOAM®-Based Multi-physics Solver for Nuclear Reactor Analysis

215

1 Introduction

215

2 The GeN-Foam Multi-physics Solver

217

2.1 Neutron Transport

218

2.2 Thermal-Mechanics

219

2.3 Thermal-Hydraulics

220

2.4 Fuel Temperatures

221

2.5 Coupling Strategy

222

3 Discussion and Conclusions

222

References

225

Harmonic Balance Method for Turbomachinery Applications

226

1 Introduction

227

2 Mathematical Model

229

2.1 Passive Scalar Transport

229

2.2 Incompressible Fluid Flow

231

3 Results

232

4 Conclusion

234

References

235

Implementation of a Flexible and Modular Multiphase Framework for the Analysis of Surface-Tension-Driven Flows Based on a Hybrid LS-VOF Approach

237

1 Introduction

237

2 Mathematical Formulation

239

2.1 Governing Equations

239

2.2 The Simplified LS-VOF Method

240

2.3 Implementation of the Thermal Marangoni Migration Method in OpenFOAM®

242

3 Solver Validation

244

4 Conclusions and Future Directions

247

References

248

Implicitly Coupled Pressure–Velocity Solver

250

1 Introduction

250

2 Mathematical and Numerical Model

252

2.1 Incompressible Formulation

252

2.2 Compressible Formulation

254

3 Validation and Benchmarking

258

3.1 Validation of the Compressible Coupled Solver

259

3.2 Validation and Benchmarking of the Incompressible Coupled Solver

262

4 Conclusion

267

References

267

Improving the Numerical Stability of Steady-State Differential Viscoelastic Flow Solvers in OpenFOAM®

269

1 Introduction

269

2 Governing Equations and Numerical Procedure

270

3 Case Studies

272

3.1 Flow in a 4:1 Planar Sudden Contraction

272

3.2 Flow Around a Confined Cylinder

275

4 Conclusions

279

References

280

IsoAdvector: Geometric VOF on General Meshes

281

1 The Interfacial Flow Equations

282

2 IsoAdvector for Interface Advection

282

2.1 Interface Reconstruction

284

2.2 Interface Advection

285

2.3 Bounding

287

3 Pure Advection Tests

288

3.1 Notched Disc in Solid Body Rotation

288

3.2 Sphere in Shear Flow

290

4 Using isoAdvector in interFoam

290

5 The damBreak Case

292

6 Steady Stream Function Wave

293

7 Summary

295

References

296

Liquid Atomization Modeling in OpenFOAM®

297

1 Introduction

298

2 ELSA-Base

299

3 Quasi-Multiphase Eulerian Approach

301

4 ELSA-ICM Approach

304

References

307

Lubricated Contact Model for Cold Metal Rolling Processes

309

1 Introduction

309

2 Mathematical Model

310

2.1 Asperity Contact Model

311

2.2 Lubricant Flow Model

315

2.3 Implementation of Numerical Models

316

3 Results and Discussion

317

3.1 Sheet Rolling

317

3.2 Wire Rolling

320

4 Conclusion

321

References

323

Modeling of Turbulent Flows in Rectangular Ducts Using OpenFOAM®

324

1 Introduction

325

2 Experimental Setup

326

2.1 Preston Tube

327

2.2 Irwin Probes

327

3 Numerical Setup

328

4 Results and Discussion

329

4.1 Experimental Results

331

4.2 Calibration of the Irwin Probes

332

4.3 Numerical Results

332

5 Velocity Influence

335

5.1 Preliminary Results of the Rectangular Duct with Variable Section

336

6 Conclusions

337

References

338

Numerical Approach for Possible Identification of the Noisiest Zones on the Surface of a Centrifugal Fan Blade

340

1 Introduction

341

2 Theory

342

2.1 Geometry of the Problem

342

2.2 Estimation of the Acoustic Field (FW&H Analogy)

342

2.3 Proper Orthogonal Decomposition

343

2.4 Singular Value Decomposition (SVD)

346

3 Application

347

3.1 Geometry, Spatial Discretization, and Boundary Conditions

347

3.2 Governing Equations and Time Discretization

348

3.3 POD Analysis and Interpretation

349

3.4 SVD Analysis and Interpretation

350

3.5 Conclusion

352

References

352

Numerical Modeling of Flame Acceleration and Transition from Deflagration to Detonation Using OpenFOAM®

355

1 Introduction

356

2 Governing Equations

357

2.1 Solution Algorithms

358

2.2 Transition from Low Mach Number to High Mach Number Flows

361

3 Case Study

361

4 Results and Discussion

362

4.1 Predictions Using the Pressure-Based Solver

362

4.2 Predictions Using the Density-Based Solver

364

5 Conclusion

368

References

369

Open-Source 3D CFD of a Quadrotor Cyclogyro Aircraft

371

1 Background

372

2 CFD Model

373

2.1 Mesh Generation

375

2.2 Isolated Airframe Mesh

375

2.3 Rotor Model

376

2.4 Entire Aircraft Mesh

377

2.5 Final Mesh Tuning

378

2.6 Validation

380

3 Domain Decomposition Parallelization

381

4 Closing Remarks

383

References

384

A Review of Shape Distortion Methods Available in the OpenFOAM® Framework for Automated Design Optimisation

387

1 Introduction

387

2 Grid Deformation and Regeneration Techniques

391

2.1 snappyHexMesh

391

2.2 Grid Distortion Methods

393

2.3 Immersed Boundary Method (IBM)

394

3 Conclusions

396

References

396

Simulating Polyurethane Foams Using the MoDeNa Multi-scale Simulation Framework

398

1 Introduction

399

2 Governing Equations

400

2.1 Reaction Kinetics

400

2.2 Bubble-Scale Model

400

2.3 Modeling the Macroscopic Scale

402

3 The MoDeNa Software Framework

404

3.1 Design Philosophy

404

3.2 Scale Coupling

404

3.3 Software Components

405

3.4 Coupling of Macro- and Bubble-Scale Models

406

4 MoDeNa as a Functional Piece in Applications

407

4.1 Defining Surrogate Models

407

4.2 Embedding Surrogate Models into OpenFOAM®

408

4.3 Overall Simulation Workflow

409

5 Physical Properties and Operating Conditions

409

6 Results and Discussion

410

7 Conclusions

412

References

412

Simulation of a Moving-Bed Reactor and a Fluidized-Bed Reactor by DPM and MPPIC in OpenFOAM®

415

1 Introduction

415

2 Physical Models

416

2.1 Discrete Particle Method (DPM)

416

2.2 Multiphase Particle-In-Cell (MPPIC)

418

3 Implementation Strategy in OpenFOAM®

418

4 Results for the Moving-Bed Reactor

419

4.1 Case Setup

419

4.2 Results and Discussion

421

5 Results for the Fluidized-Bed Reactor

423

5.1 Lab-Scale Fluidized-Bed Reactor

423

5.2 Industrial-Scale Fluidized-Bed Reactor

426

6 Conclusion

428

References

430

Simulation of Particulate Fouling and its Influence on Friction Loss and Heat Transfer on Structured Surfaces using Phase-Changing Mechanism

432

1 Introduction

432

2 Multiphase Approach for the Simulation of Particulate Fouling

433

2.1 Lagrangian Branch

433

2.2 Eulerian Branch

438

2.3 Computational Grid and Boundary Conditions

439

3 Results

440

3.1 Validation

440

3.2 Particulate Fouling on Structured Heat Transfer Surfaces

444

4 Conclusion

447

References

447

solidificationMeltingSource: A Built-in fvOption in OpenFOAM® for Simulating Isothermal Solidification

449

1 Introduction

449

1.1 fvOptions

449

1.2 Background on Isothermal Solidification

450

2 Governing Equations

451

2.1 Conservation Equations

451

2.2 Derivation of the Equations for Source Terms

452

3 Implementation in solidificationMeltingSource

454

4 Problem Statement and Simulation Setup

455

5 Results

456

6 Conclusions

456

References

457

Study of OpenFOAM® Efficiency for Solving Fluid–Structure Interaction Problems

459

1 Introduction

460

2 Governing Equations

461

3 Numerical Methods

462

3.1 OpenFOAM®: A Fluid–Structure Interaction Analysis Using the Finite Volume Method

462

3.2 Kratos: Particle Finite Element Method with Fixed Mesh

463

3.3 Vortex Element Method

463

3.4 LS-STAG Method

465

4 Numerical Simulation

467

4.1 Flow Simulation Around the Fixed Airfoil

468

4.2 Wind Resonance Simulation

468

4.3 Hysteresis Simulation

470

5 Comparison of the Considered Numerical Methods

470

6 Conclusion

471

References

471

The Harmonic Balance Method for Temporally Periodic Free Surface Flows

474

1 Introduction

474

2 Harmonic Balance Method

475

2.1 Mathematical Model

475

2.2 Coupling of Steady-State Equations

476

3 Test Cases

476

3.1 2D Ramp Test Case

477

3.2 DTMB Wave Diffraction Test Case

477

4 Conclusion

481

References

481

Two-Way Coupled Eulerian–Eulerian Simulations of a Viscous Snow Phase with Turbulent Drag

483

1 Introduction

483

2 The Drifting Snow Viscosity Model

488

3 Validation

490

3.1 Validation Experiment

490

3.2 Simulation Setup

492

3.3 Results and Discussion

495

4 Conclusions and Future Work

498

References

498

Use of OpenFOAM® for the Investigation of Mixing Time in Agitated Vessels with Immersed Helical Coils

501

1 Computational Fluid Dynamics in the Chemical Industry

501

1.1 Agitated Vessels in the Chemical Industry

502

2 Heat Exchange in Stirred Vessels

502

3 Investigated Object

503

4 Measurement Approach

504

4.1 Velocity Field via Particle Image Velocimetry (PIV)

504

4.2 Concentration Field via Laser-Induced Fluorescence (LIF)

505

5 Mixing Time

506

5.1 Definition of Mixing Time

506

5.2 Simulation of Mixing Processes

507

6 Velocity Field

507

7 Tracing via Passive Scalar Transport on Existing Velocity Fields

508

8 Determination of Mixing Time at Probe Locations

509

9 Determination of Global Mixing Time

509

10 Time Resolution for Scalar Transport

510

11 Validation of CFD Results

510

12 Conclusions and Outlook

510

References

511

Wind Turbine Diffuser Aerodynamic Study with OpenFOAM®

513

1 Introduction

513

2 Analytical Framework

514

3 Numerical Setup

515

4 Results

518

5 Conclusions

522

References

522

Index

524