Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

International Handbook of Mathematical Learning Difficulties - From the Laboratory to the Classroom

International Handbook of Mathematical Learning Difficulties - From the Laboratory to the Classroom

Annemarie Fritz, Vitor Geraldi Haase, Pekka Räsänen

 

Verlag Springer-Verlag, 2019

ISBN 9783319971483 , 834 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

255,73 EUR

Mehr zum Inhalt

International Handbook of Mathematical Learning Difficulties - From the Laboratory to the Classroom


 

Dedication

5

Foreword

6

Acknowledgements

9

Contents

10

Contributors

14

About the Editors

20

Chapter 1: Introduction

22

References

27

Part I: Development of Number Understanding: Different Theoretical Perspectives

28

Chapter 2: Neurocognitive Perspective on Numerical Development

29

Introduction

29

The Triple-Code Model of Numerical Processing and the Mental Number Line

29

The Approximate Number System

30

Number Words and Verbal Counting

30

Visual-Arabic Code

31

Place Value and Number Syntax

32

Experimental Effects of Numerical Processing

34

Subitizing vs. Counting in Dot Enumeration

34

Ratio Effect in Non-symbolic Number Comparison

35

Distance Effect in Symbolic Number Comparison

35

Size-Congruity Effect in Symbolic Comparison

36

Compatibility Effect in Comparison of Two-Digit Numbers

36

SNARC Effect

37

Numbers in the Brain

38

Implications for Instruction and Intervention

39

References

40

Chapter 3: Everyday Context and Mathematical Learning: On the Role of Spontaneous Mathematical Focusing Tendencies in the Development of Numeracy

45

Introduction

45

Early Development of Numeracy

45

Early Approximate and Exact Number Recognition

46

Subitizing and Counting

46

Basic Arithmetic Skills

47

Children’s Mathematical Activities in School and Home

48

Role of Children’s Own Practice in Numeracy Development

49

How to Measure SFON?

50

Findings of SFON Studies

51

Beyond Mere Numerosity: The Development of Relational Reasoning as the Foundation for Rational Number Knowledge

52

Spontaneous Focusing on Quantitative Relations

54

Self-Initiated Practice and Number Sense

55

Discussion

56

References

58

Chapter 4: Competence Models as a Basis for Defining, Understanding, and Diagnosing Students’ Mathematical Competences

63

Competence Models as Normative Definitions of Educational Goals

63

Competence Models to Understand and Evaluate Students’ Learning

65

Level I (Lowest Level): Basic Technical Knowledge (Routine Procedures Based on Elementary Conceptual Knowledge)

66

Level II: Basic Use of Elementary Knowledge (Routine Procedures Within a Clearly Defined Context)

66

Level III: Recognition and Utilization of Relationships Within a Familiar Context (Both Mathematical and Factual)

66

Level IV: Secure and Flexible Utilization of Conceptual Knowledge and Procedures Within the Curricular Scope

67

Level V: Modeling Complex Problems and Independent Development of Adequate Strategies

67

Competence Models to Better Understand the Difficulty of Mathematical Problems: Examples

68

Competence Models as Tools to Support Teachers’ Diagnostic Processes

70

Advancing Mathematical Competence Models: The Role of Student Errors

72

Desiderata

73

References

74

Chapter 5: Mathematical Performance among the Poor: Comparative Performance across Developing Countries

77

Introduction

77

Background

78

Methodology and Data

80

Comparing Social Gradients Across Contexts

83

Conclusion

88

Appendix

89

References

89

Chapter 6: Didactics as a Source and Remedy of Mathematical Learning Difficulties

92

A Lack of Certain Arithmetical Abilities or a Certain Way of Doing Arithmetic?

92

Computing by Counting: What Else Could a Child Do to Solve a Basic Task?

93

Direct Fact Retrieval

94

Deriving Unknown Facts from Known Facts

94

Numbers as Compositions of Other Numbers

95

Evidence on the Impact of Instructional Efforts Focused on Noncounting Strategies

97

International Comparisons

97

Longitudinal and Cross-Sectional Data and Related Theories

98

Intervention and Field Studies

101

Overcoming Computing by Counting as a Didactic Challenge

102

Learning Difficulties, Teaching Difficulties, and the Role of Education Policies

104

References

105

Chapter 7: Development of Number Understanding: Different Theoretical Perspectives

109

Introduction

109

What Kind of Perspectives on Learning Mathematics Have Developed Most During the Last Decade?

109

Have Some Views About MLD Dominated the Discussion?

110

Have Some Perspectives Got Too Little Attention in General Discussion?

111

Can We Compare the Results from Studies on Dyscalculia from Different Countries to Each Other?

113

How Far Are We in Understanding the Mathematical Brain?

114

What Are the Key Questions to Focus on Next to Improve the Understanding of the Mathematical Brain?

114

Are There Some Breakthroughs in Science that You Think Would Change Our Picture in the Near Future?

115

What Is the Role of Spontaneous Focusing on Numerosity (SFON) in MLD?

116

Can a Child Be at Different Levels in Different Math Contents in the Way Described by Reiss or Is the Development More Based on Some General Factors?

117

What Are the Roles of Informal and Formal Learning in Mathematics?

117

What is the Role of Socioeconomic Status in the Development of Math Skills

118

What Is the Interplay Between Different Perspectives of Numerical Development? Do They Talk to Each Other?

119

How Could We Improve the Discussion Between Different Views?

119

Will Science Change Math Education in the Near Future?

120

References

120

Part II: Mathematical Learning and Its Difficulties Around the World

123

Chapter 8: Mathematical Learning and Its Difficulties: The Case of Nordic Countries

124

Sweden

129

Norway

130

Iceland

132

Finland

133

Denmark

135

Summing Up

137

References

139

Chapter 9: Mathematical Learning and Its Difficulties in the Middle European Countries

143

The Big Picture

143

Educational Policies on MLD

145

Theories and Educational Practice

147

What Is the Role of Research Guiding the Practice?

153

References

155

Chapter 10: Mathematical Learning and Its Difficulties in Eastern European Countries

160

Eastern European Mathematics Education as Defined by Geographical, Historical, and Political Factors

160

Constraints and Promises of Recent Decades in Eastern European Mathematics Education

161

Lessons from International System-Level Surveys

163

Strengths and Weaknesses as Measured by International Surveys

164

Socioeconomic Background and Mathematics Achievement

167

Some Current Features and Tendencies in Eastern European Mathematics Education

170

Looking into Classrooms: Methodological Challenges

170

Fostering Students’ Mathematics Learning Talent Development, Remedial Education, School Readiness, and Attitudes

172

Talent Development and Participation in the International Mathematics Olympiad

173

School Readiness in Mathematics

174

Conclusion

175

References

176

Chapter 11: Mathematical Learning and Its Difficulties in Southern European Countries

179

Introduction

179

Educational Policies in Southern Europe

180

Definition of Mathematics Learning Difficulties, and Assessment and Diagnostic Criteria

183

Assessment of Mathematics Learning Difficulties in Italy

187

Assessment of Mathematics Learning Difficulties in Greece

188

Assessment of Mathematics Learning Difficulties in Spain

188

Assessment of Mathematics Learning Difficulties in France

189

Intervention: Theories, Research, and Educational Practice

190

Conclusions

192

References

193

Chapter 12: Mathematical Learning and Its Difficulties in the United States: Current Issues in Screening and Intervention

197

Mathematical Learning and Its Difficulties in the United States: Best Practices for Screening and Intervention

197

Early Number Competencies

200

Early Number Competencies Predict Future Mathematics Success, and Deficiencies in Number Concepts Underlie Many Mathematical Learning Difficulties

200

Core Number Competencies for Early Screening Involve Knowledge of Number, Number Relations, and Number Operations

201

Deficits in Number Sense Can Be Reliably Identified Through Early Screening, and Interventions Based on Screening Lead to Improved Mathematics Achievement in School

203

Fractions

204

Fraction Knowledge in the Intermediate Grades Predicts Algebra Success in Secondary School, and Weaknesses with Fractions Characterize Middle School Students with Mathematical Learning Difficulties

204

Fractions Are Especially Hard for Children with MLD

205

Because they Lack Magnitude Understanding, Students with MLD Struggle to Place Fractions on a Number Line

206

Fraction Difficulties Can Be Reliably Identified by Fourth Grade

206

Fraction Difficulties Can Be Improved Through Meaningful Interventions that Center on the Number Line

206

Conclusion

208

References

209

Chapter 13: Mathematical Learning and Its Difficulties in Latin-American Countries

214

Introduction

214

About the Region

216

Theories and Educational Practice

218

Mathematical Learning Disabilities in Latin American Countries

218

Mathematical Learning Disabilities in Brazil

219

Research on Mathematical Learning Disabilities

220

Future of Mathematical Learning Disabilities in Latin American Countries

222

Conclusions

222

References

223

Chapter 14: Mathematics Learning and Its Difficulties: The Cases of Chile and Uruguay

226

Introduction

226

Mathematics Learning Achievement

227

International Assessment

227

National Assessment

230

Educational Policies Addressing MLD and Educational Practice

231

Chile

231

Uruguay

234

Research into MLD

236

Chile

236

Uruguay

237

Conclusions

238

References

239

Chapter 15: Mathematical Learning and Its Difficulties in Southern Africa

244

Introduction

244

Theoretical Framing

245

Identified Problem and Research Questions

246

Methods

248

Results and Discussion of Findings

248

Lesotho

248

Malawi

250

South Africa

251

Zimbabwe

253

Case Study of Mathematical Inclusion in a Full-Service School in South Africa

256

What Was Done to Support Teachers?

257

Staff Professional Development

258

Responding to Annual National Assessments (ANAs)

259

Sharing Lessons

260

Were There Any Changes in Mathematics Learner Outcomes?

260

Conclusion

261

References

262

Chapter 16: Mathematical Learning and Its Difficulties in Australia

265

Australia: The Big Picture

265

Australia: Educational Policies and MLD

266

Australia: Theories and Educational Practice

267

Definitions in MLD in Australian States and Territories

269

Neuroscience and MLD/Dyscalculia in Australia

273

References

275

Chapter 17: Mathematical Learning and Its Difficulties in Taiwan: Insights from Educational Practice

277

Introduction

277

The Cultural Background

278

National Differences in Mathematical Learning

279

Educational Policies for Learning Difficulties in Taiwan

283

Diagnosis and Assessment Tool for Mathematical Learning Difficulties

285

Summary and Conclusion

287

Reference

288

Chapter 18: Mathematical Learning and Its Difficulties in Israel

291

Introduction

291

General Description: Population and Diversity

292

General Education and Mathematics Education in Israel

294

International Educational Tests in Math in Israel

296

Diagnosis of Mathematical Learning Disabilities in the Israeli School System

296

Current Changes in the Diagnosis and Treatment of MLD in Israel

299

Teaching Accommodations for Children Suffering from MLD in Israel

300

Diagnosis of MLD in Universities in Israel

301

Conclusion

302

References

304

Chapter 19: Learning Difficulties and Disabilities in Mathematics: Indian Scenario

307

Introduction

307

Education in India—New Initiatives

308

Initiatives for the Education of Children with Special Needs

308

Definition of Specific Learning Disability

309

Prevalence of Children with Special Needs in India

309

Teacher Preparation Courses in the Area of Learning Disabilities

310

Management of Specific Learning Disability in Schools in India

311

National Institute of Open Schooling

311

Learning Indicators/Outcomes and National Achievement Survey

313

Research on Learning Disabilities in India

316

Identification of the Prevalence of Learning Disabilities in Mathematics in India

316

Research on Learning Difficulties and Disabilities in Mathematics in India

317

Conclusion

320

References

320

Chapter 20: Adding all up: Mathematical Learning Difficulties Around the World

323

Math Achievement Around the World

324

Gender Issues

326

Heritage of the Soviet Regime

328

Intranational Diversity

328

Achievement-Motivation Gap

329

Definition of Special Needs in Math

329

Support at School for Children with Severe Math Difficulties

330

Teacher Training

331

Toward Evidence-Based Education

332

Key Issues and Trends

333

References

334

Part III: Mathematical Learning Difficulties and Its Cognitive, Motivational and Emotional Underpinnings

338

Chapter 21: Genetics of Dyscalculia 1: In Search of Genes

339

Introduction

339

Clinical Epidemiology of Developmental Dyscalculia

341

Genetic Susceptibility to Dyscalculia

343

Familial Aggregation in Dyscalculia

344

Heritability of Dyscalculia

344

Gene-Finding Strategies

345

Genome-Wide Association Studies

345

Candidate Genes from Comorbidities

348

Perspectives

349

References

350

Chapter 22: Genetics of Dyscalculia 2: In Search of Endophenotypes

354

Introduction

354

Cognitive Endophenotypes of Dyscalculia

354

Basic Number Processing

355

Phonological Processing

357

Visuospatial and Visuoconstructional Abilities

357

Working Memory

357

Chromosomal Abnormalities

358

Dyscalculia in Turner Syndrome

358

Dyscalculia in Klinefelter Syndrome

360

Genomic Disorders

360

Dyscalculia in 22q11.2 Deletion Syndromes

361

Dyscalculia in Williams Syndrome

362

Monogenic Conditions

364

Dyscalculia in Fragile X Syndrome and FMR1 Premutations

364

From the Lab to the Classroom

365

References

366

Chapter 23: Neurobiological Origins of Mathematical Learning Disabilities or Dyscalculia: A Review of Brain Imaging Data

375

Introduction

375

Brain Activity During Numerical Magnitude Processing and Arithmetic

377

Numerical Magnitude Processing

377

Arithmetic

379

Structural Brain Imaging

383

Connectivity

383

Effects of Remedial Interventions on Brain Activity

385

Discussion

385

Conclusion

387

References

387

Chapter 24: Comorbidity and Differential Diagnosis of Dyscalculia and ADHD

393

Introduction

393

What Is Comorbidity?

393

Why Are Comorbidity Rates for Neurodevelopmental Disorders So High?

394

What Can Be Causes for Difficulties in Mathematics?

395

Why Is It Important to Distinguish Between Primary and Secondary MLD?

396

What Are Difficulties for a Respective Differential Diagnosis?

397

Which Error Types Are Not Specific to Primary MLD?

398

Objectives of the Current Study

400

Materials and Methods

400

Participants

400

Assessment

401

Error Categories

402

Analyses

402

Results

403

Descriptive Statistics

403

Convergent and Discriminant Validity of the Postulated More Specific Clinical Cut-Off

403

Differences in Calculation Error Types Between Secondary and Possible Primary MLD

405

Differences in Counting Error Types Between Secondary and Possible Primary MLD

406

Discussion

407

Validation of the Postulated Clinical Cut-Off for the Basis-Math Overall Score

407

Specific and Unspecific Error Types

408

Limitations of This Study

409

Conclusions

409

References

410

Chapter 25: Working Memory and Mathematical Learning

414

Introduction

414

Working Memory (WM): A Domain-General Precursor of Mathematical Learning

415

Contribution of WM Components to Mathematical Learning

417

Working Memory, Word Problems, and Calculation

418

Executive Functions of Central Executive Component of WM and Their Role in Mathematics

420

Working Memory Training

422

Conclusion

424

References

425

Chapter 26: The Relation Between Spatial Reasoning and Mathematical Achievement in Children with Mathematical Learning Difficulties

429

Introduction

429

Numerical Magnitude and Spatial Reasoning in Typically Developing Children

432

Spatial Reasoning in Children with MD

433

Spatial Training to Support Children with MD

434

Conclusions

436

References

437

Chapter 27: The Language Dimension of Mathematical Difficulties

442

Language Factors on Different Levels and Their Connection to Mathematics Achievement

442

Differences Between Everyday and Academic Language on Word, Sentence, and Text/Discourse Level

443

Disentangling Language Obstacles on Word, Sentence, Text, and Discourse Levels and Their Connection to Mathematics Achievements

444

Obstacles on the Word Level

444

Obstacles on the Sentence and Text Level

445

Language Factors in the Achievement of Specific Groups

446

Second-Language Learners

446

Students with Learning Disabilities in Mathematics and Reading

446

Students with Specific Language Impairment and Mathematics Learning

447

Language Dimensions in Learning Processes

448

Language as a Learning Medium, Learning Prerequisite, and Learning Goal

448

Discourse Practices as a Construct to Capture Language Demands on the Discourse Level

449

Discourse Practices and Discourse Competence in Mathematics Classrooms

449

General and Topic-Specific Lexical Means for Different Mathematical Discourse Practices

451

Approaches for Fostering Students’ Language Proficiency in Mathematics

452

Enhancing Discourse Practices: Qualitative Output Hypotheses

452

Enhancing Conceptual Knowledge: Relating Registers and Representations

452

Specifying Mathematical and Language Goals: The SIOP Model

453

Combining Conceptual and Lexical Learning Trajectories: Macro-Scaffolding

454

Including Home Languages: Activating Students’ Multilingual Repertoires

454

Conclusion

455

References

456

Chapter 28: Motivational and Math Anxiety Perspective for Mathematical Learning and Learning Difficulties

461

Introduction

461

Opportunity–Propensity Model

462

Motivation

463

Definition of the Construct

463

Math Anxiety

466

Conclusions and Implications

468

References

468

Chapter 29: Mathematics and Emotions: The Case of Math Anxiety

472

Introduction

472

Math Anxiety as a Construct

473

Math Anxiety and Motivation

474

Antecedents of Math Anxiety

475

Genetics

475

Age

476

Gender

476

Culture

477

Teachers

478

Parents

478

Peers

479

Math Achievement

479

Cognitive Mechanisms

480

Working Memory

480

Numerical Abilities

482

Visuospatial Abilities

482

Neurobiological Underpinnings of Math Anxiety

482

Assessment of Math Anxiety

483

Interventions for Math Anxiety: From the Lab to the Classroom

493

Conclusion

495

References

496

Obs. References marked with # refer to self-report questionnaires presented in Tables 29.1, 29.2, and 29.3.

496

Chapter 30: Cognitive and Motivational Underpinnings of Mathematical Learning Difficulties: A Discussion

507

Chapter 21: Carvalho and Haase

508

Chapter 22: Haase and Carvalho

508

Chapter 23: DeSmedt, Peters, and Ghesquière

509

Chapter 24: Krinzinger

511

Chapter 25: Passolunghi and Costa

512

Chapter 26: Resnick, Newcombe, and Jordan

514

Chapter 27: Prediger, Erath, and Opitz

515

Chapter 28: Baten, Pixner, and Desoete

516

Chapter 29: Haase, Guimarães, and Wood

517

Common Themes

518

Concluding Remarks

519

References

520

Part IV: Understanding the Basics: Building Conceptual Knowledge and Characterizing Obstacles to the Development of Arithmetic Skills

521

Chapter 31: Counting and Basic Numerical Skills

522

Number Sense

523

Small Number Representations

523

Approximate Number Representations

524

Summary

525

Number Language

525

Knower Levels

526

Discrete Quantification

528

Numerosity

530

Summary

531

Counting Principles

532

Cardinality Principle

532

Successor Function

534

Summary

535

Facilitating the Acquisition of Exact Number Concepts

535

Facilitating the Acquisition of Individual Number Words

535

Facilitating the Acquisition of the Cardinality Principle

537

Broad-Scale Intervention

537

Numerically Based Toys

538

Number Language

539

Summary

540

References

540

Chapter 32: Multi-digit Addition, Subtraction, Multiplication, and Division Strategies

544

Multi-digit Arithmetic Solution Strategies

545

Multi-digit Addition and Subtraction Strategies

547

Strategies Framework

547

Children’s Strategy Use: Empirical Findings

548

Obstacles in Development

550

Multi-digit Multiplication and Division Strategies

552

Strategies Framework

552

Children’s Strategy Use: Empirical Findings

554

Obstacles in Development

555

Discussion

556

References

559

Chapter 33: Development of a Sustainable Place Value Understanding

562

Introduction

562

Properties of Place Value Systems

563

Place Value Understanding

564

Procedural Place Value Understanding

565

Conceptual Place Value Understanding

565

Difficulties in Place Value Understanding

566

Development of Place Value Understanding

567

Nonstructured Numbers

568

Identifying Decimal Units

569

Ordinal Aspect of Place Value Understanding

569

Cardinal Aspect of Place Value Understanding

570

Integration of Cardinal and Ordinal Aspects

570

Nonsustainable Concepts

570

Our Own Model

571

Predecadic Level

571

Level I: Place Values

572

Level II: Tens-Units Relation with Visual Support

572

Level III: Tens–Units Relation Without Visual Support

573

Level IV: General Decimal-Bundling-Unit Relations

574

Empirical Research

575

Conclusion

575

Barriers in the Development of a Sustainable Place Value Understanding

576

Educational Implications

577

Future Perspectives

578

References

578

Chapter 34: Understanding Rational Numbers – Obstacles for Learners With and Without Mathematical Learning Difficulties

581

Introduction

581

Learning of Rational Numbers: Learning a New Concept

582

Dual Processes in Rational Number Problems: The Natural Number Bias

584

Obstacles for Learners with Mathematical Learning Difficulties

586

How to Support Learners: Evidence from Intervention Studies

588

Conclusions and Perspectives

590

References

591

Chapter 35: Using Schema-Based Instruction to Improve Students’ Mathematical Word Problem Solving Performance

595

Mathematical Word Problem Solving

595

Theoretical Framework for Understanding How Schema-Based Instruction Is Beneficial to Word Problem Solving Performance

597

What Are the Unique Features of SBI and How Does It Contribute to Word Problem Solving Performance?

598

Teaching Word Problem Solving Using SBI: Empirical Evidence from Intervention Studies

603

Studies 1 and 2: Supporting Evidence for SBI Compared to Traditional Instruction

603

Studies 3 and 4: Supporting Evidence for SBI Compared to Standards-Based Instruction

604

Remaining Challenges

605

References

606

Chapter 36: Geometrical Conceptualization

610

Characterizing School Geometry

610

Three Approaches to School Geometry

611

G1. The Geometry of Concrete Objects

612

G2. The Geometry of Graphically Justified Ideal Plane Figures and Solids

612

G3. Quasi-axiomatic Geometry

612

The van Hiele Theory about the Stages of Development in Geometrical Thinking

613

Level 1 (Visualizing)

613

Level 2 (Analyzing Properties)

613

Level 3 (Ordering Properties)

614

Level 4 (Formal Deduction)

614

Level 5 (Understanding Axiomatic Systems)

614

About the Characteristics of Geometric Concept Formation

616

Basic Skills in Geometry

617

Classifying and Designating Figures

617

The Skills of Definition and the Clarification of Concepts

618

The Skills of Proving

621

Towards a Dialogue of the Traditional and the Dynamic Geometry

624

Geometry and Learning Difficulties

625

Summary

626

Bibliography

627

Part V: Mathematical Learning Difficulties: Approaches to Recognition and Intervention

630

Chapter 37: Assessing Mathematical Competence and Performance: Quality Characteristics, Approaches, and Research Trends

631

Introduction

631

Quality Characteristics

632

Categories of Classification

632

Norm-Referenced Versus Not-Norm-Referenced Tests

633

Individual Versus Group Testing

633

Paper-and-Pencil Tests Versus Interviews Versus Computer-Based Tests

633

Chronological Versus Educational Age–Oriented Tests

634

Speed Versus Power Tests

634

Principles of Task Selection

634

Outline of Different Approaches

635

Curriculum-Based Measures

635

Approaches Based on Neuropsychological Theories

636

Approaches Based on Developmental Psychology Theories

643

Research Trends

645

References

647

Chapter 38: Diagnostics of Dyscalculia

650

Differential Diagnosis of Dyscalculia

652

Criterion 1: To Determine the Presence and Severity of the Math Problem

652

Criterion 2: To Determine the Math Problem Related to the Personal Abilities

654

Criterion 3: To Determine Obstinacy of the Mathematical Problem

655

Process Research

657

Learnability

658

Math Problems in Early Education

658

From Problems at a Young Age to Dyscalculia

660

Conclusion

661

Appendix

662

The Five Steps of Math Help

662

References

664

Chapter 39: Three Frameworks for Assessing Responsiveness to Instruction as a Means of Identifying Mathematical Learning Disabilities

666

Systemic RTI Reform

668

Embedded RTI

670

Dynamic Assessment

673

Comparisons across the Three Frameworks

675

References

677

Chapter 40: Technology-Based Diagnostic Assessments for Identifying Early Mathematical Learning Difficulties

679

Introduction

679

Advantages and Possibilities of Technology-Based Assessment: The Move from Summative to Diagnostic Assessment to Realise Efficient Testing for Personalised Learning

681

Theoretical Foundations of Framework Development: A Three-Dimensional Model of Mathematical Knowledge

683

A Three-Dimensional Model of Students’ Knowledge for Diagnostic Assessment in Early Education

683

Creating an Assessment System: Online Platform Building and Innovative Item Writing

687

Mathematical Reasoning Items

688

Mathematical Literacy Items

690

Items that Assess Disciplinary Mathematics Knowledge

692

Field Trial and Empirical Validation of the Theoretical Model

693

Applicability of the Diagnostic System in Everyday School Practice

695

Scaling and Item Difficulty

695

Dimensionality and Structural Validity

697

Conclusions and Further Research and Development

699

References

700

Chapter 41: Small Group Interventions for Children Aged 5–9 Years Old with Mathematical Learning Difficulties

704

Introduction

704

Learning Difficulties in Mathematics

704

Intervention

705

The Features of Effective Instruction for Children with Mathematical Learning Difficulties

707

Responsiveness to Intervention Practice in Supporting Children with Learning Difficulties

716

Finnish Web Services for Educators

717

Studies with ThinkMath Intervention Programs

718

Conclusion

721

References

721

Chapter 42: Perspectives to Technology-Enhanced Learning and Teaching in Mathematical Learning Difficulties

727

Global Inequalities in Access to Learning Technologies

729

Online Learning, Virtual Worlds, and Social Learning Environments

730

Availability: The Surge of Learning Games

732

Usage: Does Using TEL Tools Help to Produce Better Learning?

733

Affective and Motivational Factors

735

Contents: What Is Inside the Intervention Games for MLD?

736

Training Number Sense

737

From the Classrooms to the Lab

742

Final Word

743

References

744

Chapter 43: Executive Function and Early Mathematical Learning Difficulties

749

Executive Function and Early Math Learning Difficulties

749

The Role of Cognitive Executive Function

749

The Role of Emotional Executive Function

750

The Executive Function of Children with Special Needs

751

The Role of Subject-Matter Knowledge

751

Teaching Executive Function

752

Relationships Between EF and Math

753

Relationships Between EF and Math Learning

753

Exploring Causality in the Relationship Between EF and Math Learning

755

Causation: Experimental Studies of EF and Math Interventions

756

Checking Whether Teaching EF Causes Math Achievement

756

Alternative Approaches, Especially for Children with Learning Difficulties

757

Teaching Math Can Cause Both Math Learning and EF Development

757

Math Activities that May Develop EF

758

Conclusions

759

References

759

Chapter 44: Children’s Mathematical Learning Difficulties: Some Contributory Factors and Interventions

766

National and Cultural Factors: What Do We Learn from International Comparisons?

766

Might International Differences in Teaching Methods Affect Performance?

767

Socio-economic Differences

768

The Role of Attitudes and Emotions

769

Interventions for Mathematical Difficulties

771

Whole-Class Approaches

771

Light-Touch Individualized and Small-Group Interventions

772

Highly Intensive Interventions

773

Numbers Count

774

What Makes Interventions Effective?

776

References

777

Chapter 45: Beyond the “Third Method” for the Assessment of Developmental Dyscalculia: Implications for Research and Practice

781

Challenges for Educational Policy and Practice

787

References

788

Chapter 46: Challenges and Future Perspectives

791

We Need Research from Genes to Behavior to Build Bridges Between Them

792

Educational Neuroscience: Where Are We?

793

What Is Learning Arithmetic from a Neuroscientific Perspective?

795

Focus on Early Development

798

Lack of Tools for Screening and Monitoring Learning

801

Monitoring-Based Framework for Interventions in Schools

803

The Challenges of the Response-to-Intervention Approach

805

Professional Development for Teachers

806

The Scaffold of Teaching Math Content at School

807

Construction of Curricula in a Tension Between the Two Poles of Individual Prerequisites and Normative Guidelines

810

Reforming Math Education in the Twenty-First Century

812

References

814

Index

820