Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Classical Relaxation Phenomenology

Classical Relaxation Phenomenology

Ian M. Hodge

 

Verlag Springer-Verlag, 2019

ISBN 9783030024598 , 257 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

96,29 EUR

Mehr zum Inhalt

Classical Relaxation Phenomenology


 

Preface

6

Acknowledgments

8

Contents

9

About the Author

14

Part I: Mathematics

15

Chapter 1: Mathematical Functions and Techniques

16

1.1 Gamma and Related Functions (https://dlmf.nist.gov/5)

16

1.2 Error Function (https://dlmf.nist.gov/7)

17

1.3 Exponential Integrals (https://dlmf.nist.gov/6)

18

1.4 Hypergeometric Function (https://dlmf.nist.gov/15)

18

1.5 Confluent Hypergeometric Function (https://dlmf.nist.gov/13)

19

1.6 Williams-Watt Function

20

1.7 Bessel Functions (https://dlmf.nist.gov/10)

20

1.8 Orthogonal Polynomials (https://dlmf.nist.gov/18)

21

1.8.1 Legendre (https://dlmf.nist.gov/14.4)

22

1.8.2 Laguerre (https://dlmf.nist.gov/18.4)

23

1.8.3 Hermite (https://dlmf.nist.gov/18.4)

23

1.9 Sinc Function

24

1.10 Airy Function (https://dlmf.nist.gov/9)

25

1.11 Struve Function (https://dlmf.nist.gov/11)

25

1.12 Matrices and Determinants (https://dlmf.nist.gov/1.3)

25

1.13 Jacobeans (https://dlmf.nist.gov/1.5#vi)

28

1.14 Vectors (https://dlmf.nist.gov/1.6)

30

References

36

Chapter 2: Complex Variables and Functions

37

2.1 Complex Numbers

37

2.2 Complex Functions

38

2.2.1 Cauchy Riemann Conditions

45

2.2.2 Complex Integration and Cauchy Formulae

46

2.2.3 Residue Theorem

46

2.2.4 Hilbert Transforms, Crossing Relations, and Kronig-Kramer Relations

48

2.2.5 Plemelj Formulae

51

2.2.6 Analytical Continuation

52

2.3 Transforms

53

2.3.1 Laplace

53

2.3.2 Fourier

56

2.3.3 Z

58

2.3.4 Mellin

59

References

59

Chapter 3: Other Functions and Relations

60

3.1 Heaviside and Dirac Delta Functions

60

3.2 Green Functions

61

3.3 Schwartz Inequality, Parseval Relation, and Bandwidth Duration Principle

62

3.4 Decay Functions and Distributions

66

3.5 Underdamping and Overdamping

70

3.6 Response Functions for Time Derivative Excitations

73

3.7 Computing g(ln?) from Frequency Domain Relaxation Functions

74

References

80

Chapter 4: Elementary Statistics

81

4.1 Probability Distribution Functions

81

4.1.1 Gaussian

81

4.1.2 Binomial

83

4.1.3 Poisson

83

4.1.4 Exponential

84

4.1.5 Weibull

84

4.1.6 Chi-Squared

84

4.1.7 F

85

4.1.8 Student t

86

4.2 Student t-Test

86

4.3 Regression Fits

87

References

90

Chapter 5: Relaxation Functions

91

5.1 Single Relaxation Time

91

5.2 Logarithmic Gaussian

93

5.3 Fuoss-Kirkwood

94

5.4 Cole-Cole

95

5.5 Davidson-Cole

98

5.6 Glarum Model

100

5.7 Havriliak-Negami

104

5.8 Williams-Watt

106

5.9 Boltzmann Superposition

108

5.10 Relaxation and Retardation Processes

109

5.11 Relaxation in the Temperature Domain

114

5.12 Thermorheological Complexity

116

References

117

Part II: Electrical Relaxation

118

Chapter 6: Introduction to Electrical Relaxation

119

6.1 Introduction

119

6.1.1 Nomenclature

119

6.1.2 Relaxation of Polarization

120

6.2 Electromagnetism

120

6.2.1 Units

120

6.2.2 Electromagnetic Quantities

122

6.2.3 Electrostatics

123

Point Charge (Coulomb´s Law)

124

Long Thin Rod with Uniform Linear Charge Density

124

Flat Insulating Plate

124

Flat Conducting Plate

125

Two Parallel Insulating Flat Plates

125

Two Parallel Conducting Flat Plates

125

Concentric Conducting Cylinders

126

Concentric Conducting Spheres

126

Isolated Sphere

127

6.2.4 Electrodynamics

127

6.2.5 Maxwell´s Equations

128

6.2.6 Electromagnetic Waves

131

6.2.7 Local Electric Fields

134

6.2.8 Circuits

135

Simple Circuits

135

Resistances in Series and in Parallel

135

Capacitances in Series and in Parallel

135

Inductances in Series and in Parallel

136

Combined Series and Parallel Elements

137

AC Circuits

137

Resistances

138

Capacitances

138

Inductances

139

Parallel Resistance and Capacitance

139

Series Resistance and Capacitance

141

Experimental Factors

142

Cable Effects

142

Electrode Polarization

143

References

144

Chapter 7: Dielectric Relaxation

146

7.1 Frequency Domain

146

7.1.1 Dipole Rotation

146

7.1.2 Hopping Ions

151

7.2 Resonance Absorption

151

7.3 Time Domain

152

7.4 Temperature Domain

153

7.5 Equivalent Circuits

154

7.6 Interfacial Polarization

155

7.7 Maxwell-Wagner Polarization

156

References

158

Chapter 8: Conductivity Relaxation

159

8.1 General Aspects

159

8.2 Distribution of Conductivity Relaxation Times

162

8.3 Resonance Absorption Contribution

163

8.4 Constant Phase Element Analysis

163

References

163

Chapter 9: Examples

165

9.1 Dielectric Relaxation of Water

165

9.1.1 Equilibrium Liquid Water

165

9.1.2 Supercooled Water

166

9.1.3 Water of Hydration

169

9.2 Conductivity Relaxation in Sodium ?-Alumina

173

9.3 Complex Impedance Plane Analysis of Electrode Polarization in Sintered ?-Alumina

174

9.4 Electrode Polarization and Conductivity Relaxation in the Frequency Domain

176

9.5 Complex Impedance Plane Analysis of Atmosphere Dependent Electrode Effects in KHF2

177

9.6 Intergranular Effects in Polycrystalline Electrolytes

179

9.7 Intergranular Cracking

179

9.7.1 Lower Frequency (Intergranular) Relaxation in Cracked Sample

180

9.7.2 Higher frequency (Intragranular) Relaxation in Cracked Sample

180

9.8 Intergranular Gas Adsorption

181

9.9 Estimation of ?0

182

9.10 Analyses in the Complex Resistivity Plane

182

9.11 Modulus and Resistivity Spectra

183

9.12 Complex Admittance Applied to Polycrystalline Electrolytes and Electrode Phenomena

183

References

184

Part III: Structural Relaxation

185

Chapter 10: Thermodynamics

186

10.1 Elementary Thermodynamics

186

10.1.1 Nomenclature

186

10.1.2 Temperature Scales

187

10.1.3 Quantity of Material

187

10.1.4 Gas Laws and the Zeroth Law of Thermodynamics

187

10.1.5 Heat, Work, and the First Law of Thermodynamics

189

10.1.6 Entropy and the Second Law of Thermodynamics

189

10.1.7 Heat Capacity

190

10.1.8 Debye Heat Capacity and the Third Law of Thermodynamics

191

10.2 Thermodynamic Functions

193

10.2.1 Entropy S

193

10.2.2 Internal Energy U

193

10.2.3 Enthalpy H

193

10.2.4 Free Energies A and G

193

10.2.5 Chemical Potential ?

194

10.2.6 Internal Pressure

194

10.2.7 Derivative Properties

195

10.3 Maxwell Relations

195

10.4 Fluctuations

196

10.5 Ergodicity and the Deborah Number

197

10.6 Ehrenfest Classification of Phase Transitions

198

References

200

Chapter 11: Structural Relaxation

201

11.1 Supercooled Liquids and Fragility

201

11.1.1 Adam-Gibbs Model

203

11.2 Glassy State Relaxation

206

11.2.1 Secondary Relaxations

209

11.3 The Glass Transition

209

11.3.1 Introduction

209

11.3.2 Glass Transition Temperature

209

11.3.3 Thermodynamic Aspects of the Glass Transition

211

11.3.4 Kinetics of the Glass Transition

214

11.4 Heat Capacity

217

11.5 Sub-Tg Annealing Endotherms

220

11.6 TNM Parameters

222

11.7 SH Parameters

222

References

224

Correction to: Classical Relaxation Phenomenology

227

Appendix A: Laplace Transforms

228

Appendix B: Elementary Results

230

Solution of a Quadratic Equation

230

Solution of a Cubic Equation

230

Arithmetic and Geometric Series

231

Full and Partial Derivatives

232

Differentiation of Definite Integrals

233

Integration by Parts

233

Binomial Expansions

233

Partial Fractions

233

Coordinate Systems in Three Dimensions

234

Appendix C: Resolution of Two Debye Peaks of Equal Amplitude

236

Appendix D: Resolution of Two Debye Peaks of Unequal Amplitude

238

Appendix E: Cole-Cole Complex Plane Plot

239

Appendix F: Dirac Delta Distribution Function for a Single Relaxation Time

242

Appendix G: Derivation of M* for a Debye Relaxation with No Additional Separate Conductivity

245

Appendix H: Matlab/GNU Octave Code for Debye Relaxation with Additional Separate Conductivity ?0

247

Appendix I: Derivation of Debye Dielectric Expression from Equivalent Circuit

249

Appendix J: Simplified Derivation of the Van der Waal Potential

250

Author Index

252

Subject Index

254