Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Thermal System Optimization - A Population-Based Metaheuristic Approach

Thermal System Optimization - A Population-Based Metaheuristic Approach

Vivek K. Patel, Vimal J. Savsani, Mohamed A. Tawhid

 

Verlag Springer-Verlag, 2019

ISBN 9783030104771 , 488 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

149,79 EUR

Mehr zum Inhalt

Thermal System Optimization - A Population-Based Metaheuristic Approach


 

Preface

6

Contents

9

1 Introduction

15

Abstract

15

References

18

2 Metaheuristic Methods

20

Abstract

20

2.1 Genetic Algorithm (GA)

21

2.1.1 Reproduction

21

2.1.2 Crossover

22

2.1.3 Mutation

22

2.2 Particle Swarm Optimization (PSO) Algorithm

23

2.3 Differential Evolution (DE) Algorithm

25

2.4 Artificial Bee Colony (ABC) Algorithm

27

2.5 Cuckoo Search Algorithm (CSA)

29

2.6 Teaching–Learning-Based Optimization (TLBO) Algorithm

30

2.6.1 Teacher Phase

31

2.6.2 Learner Phase

31

2.7 Symbiotic Organism Search (SOS) Algorithm

32

2.7.1 Mutualism Phase

33

2.7.2 Commensalism Phase

33

2.7.3 Parasitism Phase

34

2.8 Water Wave Optimization (WWO) Algorithm

35

2.8.1 Propagation Operator

35

2.8.2 Refraction Operator

36

2.8.3 Breaking Operator

36

2.9 Heat Transfer Search (HTS) Algorithm

37

2.10 Passing Vehicle Search (PVS) Algorithm

40

2.11 Sine Cosine Algorithm (SCA)

42

2.12 Parameter Tuning of Algorithms

43

References

45

3 Thermal Design and Optimization of Heat Exchangers

46

Abstract

46

3.1 Shell and Tube Heat Exchanger (STHE)

46

3.1.1 Thermal Model

50

3.1.2 Case Study, Objective Function Description, and Constraints

58

3.1.3 Results and Discussion

60

3.2 Plate-Fin Heat Exchanger (PFHE)

62

3.2.1 Thermal Model

66

3.2.2 Case Study, Objective Function Description, and Constraints

70

3.2.3 Results and Discussion

72

3.3 Fin and Tube Heat Exchanger (FTHE)

75

3.3.1 Thermal Model

77

3.3.2 Case Study, Objective Function Description, and Constraints

81

3.3.3 Results and Discussion

83

3.4 Regenerative Heat Exchanger (Rotary Regenerator)

85

3.4.1 Thermal Model

87

3.4.2 Case Study, Objective Function Description, and Constraints

91

3.4.3 Results and Discussion

92

3.5 Plate Heat Exchanger (PHE)

95

3.5.1 Thermal Model

97

3.5.2 Case Study, Objective Function Description, and Constraints

102

3.5.3 Results and Discussion

103

References

105

4 Thermal Design and Optimization of Heat Engines and Heat Pumps

112

Abstract

112

4.1 Carnot Heat Engine

113

4.1.1 Thermal Model

116

4.1.2 Case Study, Objective Function Description, and Constraints

118

4.1.3 Results and Discussion

119

4.2 Rankine Heat Engine

121

4.2.1 Thermal Model

124

4.2.2 Case Study, Objective Function Description, and Constraints

127

4.2.3 Results and Discussion

128

4.3 Stirling Heat Engine

131

4.3.1 Thermal Model

133

4.3.2 Case Study, Objective Function Description, and Constraints

137

4.3.3 Results and Discussion

138

4.4 Brayton Heat Engine

141

4.4.1 Thermal Model

144

4.4.2 Case Study, Objective Function Description, and Constraints

148

4.4.3 Results and Discussion

149

4.5 Ericsson Heat Engine

152

4.5.1 Thermal Model

154

4.5.2 Case Study, Objective Function Description, and Constraints

157

4.5.3 Results and Discussion

158

4.6 Diesel Heat Engine

160

4.6.1 Thermal Model

163

4.6.2 Case Study, Objective Function Description, and Constraints

166

4.6.3 Results and Discussion

167

4.7 Radiative-Type Heat Engine

169

4.7.1 Thermal Model

171

4.7.2 Case Study, Objective Function Description, and Constraints

174

4.7.3 Results and Discussion

175

4.8 Stirling Heat Pump

177

4.8.1 Thermal Model

180

4.8.2 Case Study, Objective Function Description, and Constraints

183

4.8.3 Results and Discussion

184

4.9 Heat Pump Working on Reverse Brayton Cycle

187

4.9.1 Thermal Model

189

4.9.2 Case Study, Objective Function Description, and Constraints

192

4.9.3 Results and Discussion

193

4.10 Absorption Heat Pump

195

4.10.1 Thermal Model

198

4.10.2 Case Study, Objective Function Description, and Constraints

201

4.10.3 Results and Discussion

202

References

204

5 Thermal Design and Optimization of Refrigeration Systems

212

Abstract

212

5.1 Carnot Refrigerator

213

5.1.1 Thermal Model

216

5.1.2 Case Study, Objective Function Description, and Constraints

220

5.1.3 Results and Discussion

221

5.2 Single-Effect Vapor Absorption Refrigerator

223

5.2.1 Thermal Model

226

5.2.2 Case Study, Objective Function Description, and Constraints

229

5.2.3 Results and Discussion

230

5.3 Multi-temperature Vapor Absorption Refrigerator

232

5.3.1 Thermal Model

235

5.3.2 Case Study, Objective Function Description, and Constraints

239

5.3.3 Results and Discussion

240

5.4 Cascade Refrigerator

242

5.4.1 Thermal Model

246

5.4.2 Case Study, Objective Function Description, and Constraints

250

5.4.3 Results and Discussion

252

5.5 Ejector Refrigerator

254

5.5.1 Thermal Model

257

5.5.2 Case Study, Objective Function Description, and Constraints

262

5.5.3 Results and Discussion

263

5.6 Thermo-Electric Refrigerator

265

5.6.1 Thermal Model

267

5.6.2 Case Study, Objective Function Description, and Constraints

270

5.6.3 Results and Discussion

271

5.7 Stirling Cryogenic Refrigerator

274

5.7.1 Thermal Model

277

5.7.2 Case Study, Objective Function Description, and Constraints

280

5.7.3 Results and Discussion

281

5.8 Ericsson Cryogenic Refrigerator

283

5.8.1 Thermal Model

286

5.8.2 Case Study, Objective Function Description, and Constraints

290

5.8.3 Results and Discussion

291

References

293

6 Thermal Design and Optimization of Power Cycles

300

Abstract

300

6.1 Rankine Power Cycle

301

6.1.1 Thermal Model

304

6.1.2 Case Study, Objective Function Description, and Constraints

307

6.1.3 Results and Discussion

309

6.2 Brayton Power Cycle

312

6.2.1 Thermal Model

314

6.2.2 Case Study, Objective Function Description, and Constraints

318

6.2.3 Results and Discussion

319

6.3 Braysson Power Cycle

321

6.3.1 Thermal Model

323

6.3.2 Case Study, Objective Function Description, and Constraints

326

6.3.3 Results and Discussion

327

6.4 Kalina Power Cycle

329

6.4.1 Thermal Model

332

6.4.2 Case Study, Objective Function Description, and Constraints

335

6.4.3 Results and Discussion

336

6.5 Combined Brayton and Inverse Brayton Power Cycle

338

6.5.1 Thermal Model

340

6.5.2 Case Study, Objective Function Description, and Constraints

342

6.5.3 Results and Discussion

343

6.6 Atkinson Power Cycle Optimization

346

6.6.1 Thermal Model

348

6.6.2 Case Study, Objective Function Description, and Constraints

350

6.6.3 Results and Discussion

351

References

353

7 Thermal Design and Optimization of Few Miscellaneous Systems

358

Abstract

358

7.1 Cooling Tower

358

7.1.1 Thermal Model

361

7.1.2 Case Study, Objective Function Description, and Constraints

367

7.1.3 Results and Discussion

368

7.2 Heat Pipe

370

7.2.1 Thermal Model

373

7.2.2 Case Study, Objective Function Description, and Constraints

377

7.2.3 Results and Discussion

378

7.3 Micro-channel Heat Sink

381

7.3.1 Thermal Model

383

7.3.2 Case Study, Objective Function Description, and Constraints

387

7.3.3 Results and Discussion

388

7.4 Solar Air Heater

391

7.4.1 Thermal Model

393

7.4.2 Case Study, Objective Function Description, and Constraints

395

7.4.3 Results and Discussion

396

7.5 Solar Water Heater

398

7.5.1 Thermal Model

400

7.5.2 Case Study, Objective Function Description, and Constraints

403

7.5.3 Results and Discussion

404

7.6 Solar Chimney Power Plant

407

7.6.1 Thermal Model

409

7.6.2 Case Study, Objective Function Description, and Constraints

411

7.6.3 Results and Discussion

411

7.7 Turbojet Engine

413

7.7.1 Thermal Model

415

7.7.2 Case Study, Objective Function Description, and Constraints

416

7.7.3 Results and Discussion

417

References

420

MATLAB Code of Optimization Algorithms

427

Index

482