Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Self-Healing Nanotextured Vascular Engineering Materials

Self-Healing Nanotextured Vascular Engineering Materials

Alexander L. Yarin, Min Wook Lee, Seongpil An, Sam S. Yoon

 

Verlag Springer-Verlag, 2019

ISBN 9783030052676 , 271 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

149,79 EUR

Mehr zum Inhalt

Self-Healing Nanotextured Vascular Engineering Materials


 

Preface

6

Contents

10

About the Authors

14

1 Introduction

16

1.1 Nature-Inspired Biomimetic Self-Healing for Self-sustained Mechanical Properties

17

1.2 Self-Healing: Extension to Corrosion Protection

19

1.3 Capsule-Based Approach to Self-Healing

20

1.3.1 Microcapsules Filled with Healing Agents

21

1.3.2 Nanoscale Capsules Filled with Healing Agents

23

1.4 Tube and Channel Networks and Microfibers

24

1.5 Sacrificial Materials and Shape-Memory Polymers

31

References

33

Materials and Fundamental Physicochemical Phenomena

37

2 Healing Agents Used for Mechanical Recovery in Nanotextured Systems

38

2.1 Dicyclopentadiene (DCPD) and Grubbs’ Catalyst

38

2.2 Poly(Dimethyl Siloxane) (PDMS)

39

2.3 Other Elastomers

39

2.4 Bisphenol-A-Based Epoxy and Other Types of Epoxy

44

2.5 Gels

46

References

46

3 Macroscopic Observations of Physicochemical Aspects of Self-Healing Phenomena

50

3.1 Spreading of Released Drops of Healing Agents on Horizontal Surfaces

50

3.1.1 Experimental Observations

51

3.1.2 Wetting of Self-Healing Agents on Porous Electrospun NFs

53

3.1.3 Coalescence of Droplets of Self-Healing Agents on Porous Electrospun NFs

55

3.1.4 The Hoffman–Voinov–Tanner Law and Droplet Footprint Spreading on Wettable Intact Surfaces and NF Mats

58

3.1.5 Coalescence of Droplets on NF Mats

64

3.2 Spreading on Tilted Surfaces

68

3.3 Filling of Crack Tips

75

3.3.1 Macroscopic View of Epoxy Release and Hardening

75

3.3.2 Epoxy-Hardener Reaction Observed in a Macroscopic Crack-Tip-Shaped Mold

76

3.4 Stitching Cracks and the Corresponding Mechanical Properties

78

3.4.1 Macroscopic Model of Self-Healing Composite Materials with Embedded Microchannel System

78

3.4.2 Release and Mixing of Healing Agents

80

3.4.3 Wettability-Driven Spreading and Polymerization of Healing Agents

81

3.4.4 Recovery of Mechanical Strength

82

References

85

Fabrication Methods

88

4 Fabrication of Vascular Nanofiber Networks with Encapsulated Self-Healing Agents for Mechanical Recovery

89

4.1 Electrospinning

89

4.1.1 Charge Relaxation Time in Electrolytes

89

4.1.2 Formation of Electrospun Polymer NFs

91

4.2 Co-electrospinning

96

4.3 Emulsion Spinning

101

4.4 Solution Blowing

110

4.5 Coaxial Solution Blowing

112

4.6 Emulsion Blowing

118

4.7 Two- and Three-Dimensional Self-Healing Materials

121

4.7.1 Two-Dimensional Planar Self-Healing Composites

121

4.7.2 Three-Dimensional Self-Healing Composites

124

References

129

5 Characterization of Self-Healing Phenomena on Micro- and Nanoscale Level

132

5.1 Visualization

132

5.2 Spectroscopic Characterization

133

5.3 Thermal Analysis

141

References

144

Mechanical Behavior of Self-Healing Nanotextured Materials

146

6 Failure, Cracks, Fracture, Fatigue, Delamination, Adhesion, and Cohesion

147

6.1 Failure Criteria

147

6.2 Cracks in Brittle Elastic-Plastic Media

149

6.3 Cracks in Viscoelastic Media

154

6.4 Fatigue Cracks

157

6.5 Critical Catastrophic Crack and Subcritical Crack Propagation

160

6.6 Delamination Cracks

164

6.7 Adhesion and Cohesion Energy: Stiff Materials

166

6.8 Adhesion and Cohesion Energy: Soft Materials

169

References

171

7 Self-Healing of Mechanical Properties: Evaluation by Tensile Testing

174

7.1 Tensile Testing: Stiffness Recovery in Composites with Co-electrospun Polyacrylonitrile–DMS Resin Monomer–Curing Agent Nanofibers

174

7.2 Tensile Testing: Stiffness Recovery in Composites with Solution-Blown PVDF/PEO/Epoxy/Hardener NFs

181

7.3 Strength Recovery Under Static Fatigue Conditions

188

7.4 Dynamic Situation: Mode I Crack Propagation

193

References

202

8 Self-Healing at Ply Surfaces: Adhesion, Cohesion, and Interfacial Toughening Evaluated Using Blister and Impact Tests

204

8.1 Blister Testing: Recovery of Adhesion or Cohesion in Composites with Co-electrospun PAN/DMS-Resin/Curing Agent NFs

204

8.2 Blister Testing: Recovery of Adhesion or Cohesion in Composites with Solution-Blown PVDF/PEO/Epoxy/Hardener NFs

212

8.3 Double-Cantilever Beam and Bending Tests

217

8.3.1 Double-Cantilever Beam Test

217

8.3.2 Bending Test

218

8.4 Interfacial Toughening Due to NFs: Intrinsic Versus Extrinsic Toughening and Self-Healing Characterized by Impact Testing

220

8.5 Cumulative Results on Mechanical Recovery of Self-Healing Vascular Materials

224

8.6 Self-Healing of Three-Dimensional Materials

228

References

234

Self-Healing Nanotextured Materials for Corrosion Protection

238

9 Capsule-Based Self-Healing Approaches for Corrosion Protection

239

9.1 Electrochemical Fundamentals of Corrosion Cracking of Metals

239

9.2 Healing Agent-Embedded Capsule-Based Self-Healing

242

9.3 Modified Healing Agents and Microcapsules

243

9.4 Corrosion Inhibitor-Embedded Capsule-Based Self-Healing

246

References

250

10 Fiber-Based Self-Healing Approaches for Corrosion Protection

253

10.1 Corrosion Protection Provided by Coatings with Embedded Core-Shell NFs Formed by Co-Electrospinning

253

10.2 Corrosion Protection Provided by Coatings with Embedded Core-Shell NFs Formed by Emulsion Spinning

256

References

259

11 Concluding Remarks and Future Perspectives

260

11.1 Advantages and Disadvantages of Self-Healing Engineering Materials and Future Research Directions

260

References

262

Index

263