Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Computer Simulation Validation - Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives

Computer Simulation Validation - Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives

Claus Beisbart, Nicole J. Saam

 

Verlag Springer-Verlag, 2019

ISBN 9783319707662 , 1056 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

234,33 EUR

Mehr zum Inhalt

Computer Simulation Validation - Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives


 

Preface

6

Contents

8

Contributors

12

1 Introduction: Computer Simulation Validation

15

1.1 Introduction

15

1.2 Goals and Readership of this Handbook

17

1.3 Structure and Topics

19

1.3.1 Foundations (Parts I–II)

20

1.3.2 Methodology (Parts III–VI)

24

1.3.3 Validation at Work—Best Practice Examples (Part VII)

31

1.3.4 Challenges in Simulation Model Validation (Part VIII)

34

1.3.5 Reflecting on Simulation Validation: Philosophical Perspectives and Discussion Points (Part IX)

37

1.4 Outlook

41

References

43

Foundations—Basic Conceptions in Simulation Model Validation

46

2 What is Validation of Computer Simulations? Toward a Clarification of the Concept of Validation and of Related Notions

47

2.1 Introduction

48

2.2 Preliminaries

49

2.3 Influential Definitions of Validating Computer Simulations

52

2.4 Discussion of the Definitions

53

2.4.1 Commonalities

53

2.4.2 Difference 1: The Object of the Validation

54

2.4.3 Difference 2: The Standard of Evaluation

58

2.4.4 Difference 3: Type of Evaluation

68

2.4.5 Difference 4: Cogency (Degree of Credibility)

69

2.4.6 Difference 5: Empirical Methodology

71

2.5 Conclusions

76

References

77

3 Simulation Accuracy, Uncertainty, and Predictive Capability: A Physical Sciences Perspective

80

3.1 Introduction

81

3.2 Foundational Issues in Simulation Credibility

83

3.3 Verification Activities

86

3.3.1 Code Verification

86

3.3.2 Solution Verification

88

3.4 Validation, Calibration, and Prediction

90

3.4.1 Model Validation

90

3.4.2 Calibration and Predictive Capability

97

3.5 Concluding Remarks

104

References

105

4 Verification and Validation Principles from a Systems Perspective

109

4.1 Introduction

109

4.2 Approaches to Verification

114

4.3 Approaches to Validation

118

4.3.1 Quantitative Approaches to Validation

120

4.3.2 Qualitative Methods: Face Validation Approaches

122

4.3.3 Validation of Library Sub-models and Generic Models

123

4.4 Acceptance or Upgrading of Simulation Models

124

4.5 Discussion

125

References

127

5 Errors and Uncertainties: Their Sources and Treatment

129

5.1 Introduction

129

5.2 Verification-Related Errors/Uncertainties

131

5.2.1 Discrete Algorithm Choice and Software Programming

132

5.2.2 Numerical Approximation Errors

134

5.2.3 Conversion of Numerical Errors into Uncertainties

137

5.2.4 Estimating Total Numerical Uncertainty

138

5.3 Validation-Related Errors/Uncertainties

139

5.3.1 Experimental Measurement

139

5.3.2 Model Validation

140

5.3.3 Model Calibration

141

5.3.4 Extrapolation

142

5.4 Uncertainty Propagation-Related Uncertainties

143

5.4.1 Model Inputs

144

5.4.2 Model Parameters (i.e.., Parametric Uncertainty)

145

5.5 Total Prediction Uncertainty

146

5.6 Discussion

148

5.7 Conclusions

149

References

149

Foundations—Validation as a Scientific Method: Philosophical Frameworks for Thinking about Validation

152

6 Invalidation of Models and Fitness-for-Purpose: A Rejectionist Approach

153

6.1 Setting the Scene for Model Evaluation

154

6.2 The Falsification Framework of Karl Popper

156

6.3 Simulation Models, Invalidation and Falsification

158

6.4 Fitness-for-Purpose, Verisimilitude and Likelihood

160

6.5 If All Models May Be False, When Can They Be Considered Useful?

162

6.6 Defining Fitness-for-Purpose and Model Invalidation

165

6.6.1 Using Bayes Ratios to Differentiate Between Models

168

6.6.2 Use of Implausibility Measures to Differentiate Between Models

169

6.6.3 Use of Limits of Acceptability to Define Behavioural Models

170

6.7 Epistemic Uncertainties and Model Invalidation

171

6.8 The Model Advocacy Problem

172

6.9 Conclusions

174

References

175

7 Simulation Validation from a Bayesian Perspective

180

7.1 Introduction

180

7.2 The Fundamentals of Bayesian Epistemology

182

7.2.1 Basic Tenets of Bayesian Epistemology

182

7.2.2 A Brief Discussion of Bayesian Epistemology

187

7.3 Bayesian Epistemology and the Validation of Computer Simulations

189

7.3.1 Data-Driven Validation

190

7.3.2 The Problem of the Priors in Validation

194

7.4 Discussion

199

7.5 Conclusions

205

References

205

8 Validation of Computer Simulations from a Kuhnian Perspective

209

8.1 Introduction

210

8.2 Kuhn's Philosophy of Science

211

8.3 A Revolution, but not a Kuhnian Revolution: Computer Simulations in Science

214

8.4 Validation of Simulations from a Kuhnian Perspective

215

8.4.1 Do Computer Simulations Require a New Paradigm of Validation?

216

8.4.2 Validation of Simulations and the Duhem–Quine Thesis

219

8.4.3 Validation of Social Simulations

221

8.5 Summary and Conclusions

227

References

228

9 Understanding Simulation Validation—The Hermeneutic Perspective

231

9.1 Introduction

231

9.2 Hermeneutics in Versus Hermeneutics of Validation

233

9.3 Hermeneutics in Validation

234

9.3.1 Hermeneutics According to Kleindorfer, O’Neill and Ganeshan

235

9.3.2 A Reply to Kleindorfer, O’Neill and Ganeshan

237

9.3.3 Claim C-Open—A Second View

243

9.4 Hermeneutics of Validation

243

9.4.1 The Requirement of a Hermeneutic Situation

244

9.4.2 Hermeneutic Naiveté Versus Hermeneutic Consciousness

245

9.4.3 Interdisciplinary Dialogue

245

9.4.4 The Hermeneutic Tasks

247

9.5 Discussion

249

9.6 Conclusions

250

References

251

Methodology—Preparatory Steps

253

10 Assessing the Credibility of Conceptual Models

254

10.1 Introduction

255

10.2 Simulation-Based Knowledge, Verification, Validity, and the Function of Models

256

10.3 Taking the Notion of “Credibility” Seriously

261

10.4 The Credibility of Models: Lessons from Scientific Practice

263

10.5 Empirical Fit and Causal Understanding

266

10.6 Models and the Exploration of Credible Worlds

269

10.7 Summary

272

References

273

11 The Foundations of Verification in Modeling and Simulation

275

11.1 Verification in Modeling and Simulation

275

11.2 Code Verification

277

11.3 Types of Code Verification Problems and Associated Benchmarks

281

11.4 Solution Verification

285

11.5 Solution Verification for Complex Problems

289

11.6 Conclusion and Prospectus

291

References

296

12 The Method of Manufactured Solutions for Code Verification

298

12.1 Introduction

298

12.2 Broad Description of MMS

300

12.3 Three Example Problems in MMS

301

12.3.1 Example 1

301

12.3.2 Example 2

302

12.3.3 Example 3

303

12.3.4 Complex Problems

304

12.4 Application to Code Verification

304

12.5 Features and Examples of MMS Code Verification

307

12.5.1 Radiation Transport Codes

307

12.5.2 Nonhomogeneous and Nonlinear Boundary Conditions

308

12.5.3 Shocks, Partitioning, and “Glass-Box” Verification

308

12.5.4 Shocks, Multiphase Flows, and Discontinuous Properties

309

12.5.5 Verification of Boundary Conditions

310

12.5.6 Unsteady Flows and Divergence-Free MMS

310

12.5.7 Variable Density Flows; Combustion

311

12.6 Attributes of MMS Code Verification

311

12.6.1 Two Multidimensional Aspects

311

12.6.2 Blind Study

311

12.6.3 Burden of MMS and Option Combinations

312

12.6.4 Code Verification for Commercial Codes

312

12.6.5 Code Verification with a Strong Completion Point

313

12.6.6 Proof?

313

12.6.7 Mere Mathematics

314

12.6.8 Irrelevance of Solution Realism to Code Verification

315

12.7 Reasons for Solution Realism in MMS

315

12.7.1 Realistic MMS in Code Verification of Glacial Ice Flow Modeling

316

12.7.2 Realistic MMS in Solution Verifications and Turbulence Models

316

12.7.3 Realistic MMS in Singularity Studies

317

12.7.4 Other Uses and Generation Methods for Realistic MMS

317

12.8 Alternative Formulations and General References for MMS

318

12.9 Conclusion

318

References

319

13 Validation Metrics: A Case for Pattern-Based Methods

322

13.1 Introduction

322

13.2 Validation Metrics

324

13.2.1 Four Types of Measurement Scales

324

13.2.2 The Desirable Properties of a Validation Metric

325

13.3 Four Families of Validation Measures

326

13.3.1 Empirical Likelihood Measures

326

13.3.2 Stochastic Area Measures

327

13.3.3 Pattern-Based Measures I: Information-Theoretic Measures

328

13.3.4 Pattern-Based Measures II: Strategic State Measures

328

13.4 Measures of Closeness or of Information Loss

329

13.4.1 Kullback–Leibler Information Loss

329

13.4.2 The Generalized Subtracted L divergence (GSL-div)

330

13.5 The Example: Models and Data

331

13.6 The State Similarity Measure (SSM)

332

13.6.1 Results for the Models

333

13.6.2 Monte Carlo Simulations of the SSM

333

13.7 Classical Possibility Theory

334

13.7.1 The Generalized Hartley Measure (GHM) for Graded Possibilities

335

13.7.2 Applying U-Uncertainty to Our Data

336

13.8 Comparing the Distances Measured by SSM and GHM

338

13.9 Conclusions

339

References

340

14 Analysing Output from Stochastic Computer Simulations: An Overview

342

14.1 Introduction

342

14.2 Preliminaries

344

14.2.1 Definitions

344

14.2.2 Background Statistical Knowledge

344

14.2.3 Setting Up the Problem

346

14.3 Working with Terminating Simulations

346

14.4 Working with Non-terminating Simulations

347

14.4.1 Welch's Method

349

14.4.2 MSER-5

351

14.5 How Many Replications?

352

14.6 Making Comparisons

353

14.6.1 Comparing Two Systems

353

14.6.2 Comparing Many Systems

355

14.7 Conclusion

355

References

356

Methodology—Points of Reference and Related Techniques

357

15 The Use of Experimental Data in Simulation Model Validation

358

15.1 Introduction

358

15.2 Data Sets for Model Development and Testing

361

15.3 Comparison Methods for Model and Target System Data Sets

362

15.3.1 Graphical Methods for System and Model Data Comparisons

362

15.3.2 Some Quantitative Measures for System and Model Comparisons in the Time Domain

363

15.3.3 Frequency-Domain Measures and Comparisons

364

15.4 System Identification and Parameter Estimation in Model Validation

365

15.4.1 A Brief Overview of System Identification and Parameter Estimation

365

15.4.2 Issues of Identifiability

367

15.4.3 Applications of System Identification and Parameter Estimation to the Processes of Validation

369

15.5 Design of Experiments and Selection of Inputs for Model Testing

371

15.6 Model Structure Optimisation

373

15.7 Experimental Data for Validation: A Physiological Modelling Example

373

15.7.1 Experimental Constraints

377

15.7.2 Experimental Design and Test Signal

378

15.8 Discussion

380

15.9 Conclusions

381

References

382

16 How to Use and Derive Stylized Facts for Validating Simulation Models

384

16.1 Introduction

384

16.2 Epistemological Foundations of Stylized Facts

386

16.2.1 Development and Definition of the Stylized Facts Concept

386

16.2.2 Using Stylized Facts for Simulation Model Validation

388

16.3 Existing Approaches to Establish Stylized Facts

392

16.4 An Alternative Process to Derive Stylized Facts

396

16.5 Conclusion and Outlook

401

References

402

17 The Users’ Judgements—The Stakeholder Approach to Simulation Validation

405

17.1 Introduction

405

17.2 Action Research and the Use of Simulation Models

407

17.2.1 Meta-Theoretical Foundations of Action Research

408

17.2.2 The Validity of Action Research Knowledge

409

17.2.3 The Use of Simulation Models in Action Research and the Subject Matter of Their Validation

410

17.3 The Logical Empiricist Versus the Post-positivist Understanding of Validity

412

17.3.1 The Logical Empiricist Understanding of Validity

412

17.3.2 The Need for a Post-positivist Understanding of Validity

413

17.4 A General Definition of Simulation Validity

414

17.4.1 Definition

415

17.4.2 Application to Socio-Ecological Simulation Models in Action Research

416

17.5 Validation Techniques Related to the Stakeholder’s Judgements

422

17.5.1 Qualitative Interviewing

422

17.5.2 Focus Groups

423

17.5.3 Role-Playing Games

424

17.5.4 Inappropriate Techniques and Related Consequences

425

17.6 Discussion

425

17.7 Conclusions

428

17.8 Outlook

428

References

429

18 Validation Benchmarks and Related Metrics

432

18.1 Introduction

432

18.2 The Concept of Validation Benchmarks

434

18.2.1 Defining Validation Benchmarks

434

18.2.2 Motivations for Using Validation Benchmarks

435

18.2.3 Sources of Benchmarks

436

18.3 The Benchmarking Process

438

18.3.1 Types of Benchmarking

438

18.3.2 Criteria of Benchmark Selection

441

18.4 A Typology of Validation Benchmarks

443

18.4.1 Strong-Sense Benchmarks

443

18.4.2 Standard Benchmarks

445

18.4.3 Yardstick Benchmarks

446

18.4.4 Touchstone Benchmarks

446

18.5 Metrics Related to Benchmarking

447

18.5.1 Basic Concepts

448

18.5.2 Measures of Accuracy

449

18.5.3 Skill Scores

451

18.5.4 Murphy–Winkler Framework and Beyond

452

18.5.5 Holistic Measurement

452

18.6 Discussion

453

18.6.1 Normalizing Simulation Validation

453

18.6.2 The Social Character of Validation Benchmarks

453

18.6.3 Between Validation and Comparison—the Limitations of Benchmarking

455

18.6.4 The Price of Efficient Benchmarks

456

18.6.5 The Devaluation of Benchmarks Proper

456

18.7 Conclusions

457

References

459

Methodology—Mathematical Frameworks and Related Techniques

461

19 Testing Simulation Models Using Frequentist Statistics

462

19.1 Introduction

462

19.2 Frequentist Statistics

464

19.2.1 Important Background

464

19.2.2 Estimation

467

19.2.3 Models of Dependence

468

19.2.4 Null Hypothesis Significance Tests

468

19.3 Statistical Model Validation: Why and How?

471

19.3.1 Why Validate?

472

19.3.2 Estimating Goodness of Fit

472

19.3.3 Testing Goodness of Fit

473

19.3.4 Tests for Splitting and Tests for Lumping

474

19.3.5 Conceptual Entry Point: TOST

476

19.3.6 A Uniformly Most Powerful Invariant Test

478

19.3.7 More Descriptive: Test of Fidelity

478

19.3.8 Statistical Validation Overview

479

19.4 Examples

481

19.4.1 Fitness for Purpose

481

19.4.2 Validation of a Theoretical Model

484

19.5 Discussion

487

19.5.1 Generalizations

488

19.5.2 Significant and Important?

489

19.5.3 Nuisance Parameters

489

19.5.4 Bayesian or Frequentist Approach?

489

19.5.5 Conclusion

491

References

491

20 Validation Using Bayesian Methods

494

20.1 Introduction

494

20.2 Fundamentals

497

20.3 Bayesian Decision Rule

499

20.4 Bayesian Univariate Hypothesis Testing

501

20.5 Multivariate Bayesian Hypothesis Testing

502

20.6 A Bayesian Measure of Evidence

503

20.7 Bayes Network

505

20.8 Non-normal Data Transformation

506

20.9 Bayesian Model Validation Process

507

20.10 Numerical Application

510

20.10.1 Example 1: Bayesian Decision Rule

510

20.10.2 Example 2: Univariate Model Validation

514

20.10.3 Example 3: Multivariate Model Validation

516

20.11 Concluding Remarks

519

References

519

21 Imprecise Probabilities

522

21.1 Introduction

522

21.2 Basics

523

21.3 Examples

525

21.3.1 Unknown Parameters

525

21.3.2 The Challenge Problems

526

21.3.3 Nonprobabilistic Odds

527

21.4 Interpretations

528

21.4.1 One-Sided Betting

528

21.4.2 Indeterminate Belief

529

21.4.3 Robustness Analysis

530

21.4.4 Evidence Theory

530

21.5 Problems

531

21.5.1 Updating

531

21.5.2 Decision-Making

532

21.6 Validation and IP

533

21.6.1 Interpretations

534

21.6.2 Problems

534

21.7 Conclusion

535

References

535

22 Objective Uncertainty Quantification

538

22.1 Introduction

538

22.2 Gene Regulatory Networks

541

22.3 Optimal Operators

544

22.4 Optimal Intervention in Regulatory Networks

545

22.5 Intrinsically Bayesian Robust Operators

547

22.6 IBR Intervention in Regulatory Networks

550

22.7 Objective Cost of Uncertainty

550

22.8 Optimal Experimental Design for Regulatory Networks

552

22.9 Discussion

554

22.10 Conclusion

555

References

556

Methodology—The Organization and Management of Simulation Validation

558

23 Standards for Evaluation of Atmospheric Models in Environmental Meteorology

559

23.1 Introduction

560

23.2 Definitions Used

561

23.2.1 Specifics of an Atmospheric Model

561

23.2.2 Modeling

562

23.2.3 Guideline

563

23.2.4 Standard

563

23.2.5 Verification

563

23.2.6 Validation

564

23.2.7 Evaluation

564

23.2.8 Model Quality Indicator

565

23.2.9 Reference Data

567

23.3 From Guidelines to Standards

567

23.3.1 Historical Background

567

23.3.2 How to Achieve a Standard

569

23.4 Generic Structure of an Evaluation Guideline

570

23.4.1 Specification of Application Area

571

23.4.2 Evaluation Steps to be Performed by the Model Developer

571

23.4.3 Evaluation Steps to be Performed by the Model User

573

23.5 Examples for Standards

574

23.5.1 Comparing Application Areas of Two Standards

574

23.5.2 Detailed Specification of an Application Area

575

23.5.3 Some Detailed Evaluation Steps to be Performed by the Model Developer

576

23.5.4 Some Detailed Evaluation Steps to be Performed by the Model User

578

23.6 Conclusions

579

References

580

24 The Management of Simulation Validation

583

24.1 Introduction

583

24.2 Simulation Terminology

585

24.3 Principles of Simulation Validation

586

24.4 Management of Simulation V&V: A Framework

588

24.5 Process-Oriented Simulation V&V Management

590

24.5.1 Simulation Validation Steps

591

24.5.2 Simulation Verification Steps

593

24.6 Draw up an Optimized V&V Scheme

594

24.7 Quantify Simulation V&V Results

596

24.8 Computer Aided Management of Simulation V&V

597

24.8.1 Management Platform

597

24.8.2 Other Validation Tools

598

24.9 Discussion

599

24.10 Conclusions

599

References

600

25 Valid and Reproducible Simulation Studies—Making It Explicit

603

25.1 Introduction

603

25.2 Example: A Model of the Decision to Migrate

606

25.3 Managing the Model: Domain-Specific Modeling Languages

608

25.4 Managing an Experiment: Experiment Specification Languages

611

25.5 Managing a Simulation Study: Provenance Models

613

25.6 Discussion

619

25.7 Conclusion

619

References

620

Validation at Work—Best Practice-Examples

624

26 Validation of Particle Physics Simulation

625

26.1 Introduction

625

26.2 What Particle Physics is About: Example LHC

626

26.2.1 The Status of the Standard Model

626

26.2.2 The Forefront Experiment: LHC

627

26.3 Data Analysis and the Use of Simulations

628

26.3.1 From Data to Physics

628

26.3.2 The Role of Simulation for Data Analysis

629

26.4 Modeling the LHC Processes

630

26.4.1 The Matrix Element of the Hard Collision

631

26.4.2 Parton Distribution Functions: Dressing the Initial State

632

26.4.3 Dressing of the Outgoing Partons

632

26.5 Detector Simulation

633

26.6 Principles of Validation and Uncertainties

636

26.6.1 Factorization of Migration

637

26.6.2 Is Factorization Correct?

638

26.7 General Procedures of Validation in Particle Physics

638

26.8 Validation of the Physics Generators

639

26.8.1 pdfs

640

26.8.2 Pile-up in pp Scattering

642

26.9 Validation of Detector Simulation

643

26.9.1 Testing the Detector Geometry

643

26.9.2 Validation of Electron Simulation

644

26.10 How Simulation is Applied in Data Analysis

646

26.10.1 Measurement of the Higgs Cross Section

646

26.10.2 Search for a Stop Quark

647

26.11 Discussion

650

26.12 Summary and Conclusion

651

References

652

27 Validation in Fluid Dynamics and Related Fields

655

27.1 Fluid Dynamics and Related Fields

655

27.1.1 Weak Models, Strong Models, and RANS Turbulence Models

656

27.2 Separation of Verification and Validation

657

27.3 Errors and Uncertainties

657

27.4 Validation—What Does It Mean?

658

27.4.1 Issue #1. Acceptability (Pass/Fail) Criteria

659

27.4.2 Issue #2. Necessity for Experimental Data

660

27.4.3 Issue #3. Intended Use

660

27.4.4 Issue #4. The Prediction Issue

661

27.5 Validation Methodology Based on ASME V&V 20-2009

661

27.5.1 ASME V&V 20-2009 Background, Motivation, and Philosophy

662

27.5.2 Validation Metrics

662

27.5.3 Defining Validation Uncertainty Uval

663

27.5.4 Estimating Validation Uncertainty

664

27.5.5 Interpretation of Validation Results and Caveats

665

27.5.6 Observations

667

27.5.7 Importance of Case 2

668

27.5.8 Model Quality Versus Validation Quality

668

27.5.9 Forthcoming Addenda to V&V 20-2009

669

27.6 Model Form Errors Versus Parameter Errors

669

27.7 Model Form Uncertainty and Probability Distribution Functions

670

27.8 Weakest Link in Validation Practice

671

27.9 New Paradigm of Experiments Designed Specifically for Validation

672

27.10 Unrealistic Expectations Placed on Experimentalists

672

27.11 Can Models be Validated? A Discussion of Falsificationism Versus Validation

673

27.11.1 Truth Versus Accuracy

674

27.11.2 Summary of Falsificationism Versus Validation

675

References

676

28 Astrophysical Validation

678

28.1 Introduction

678

28.2 Approach to Verification and Validation

679

28.3 Simulation Instruments

681

28.3.1 The Flash Code

682

28.3.2 The Postprocessing Toolkit

684

28.3.3 Simulating Reactive Flow

684

28.4 Validation Examples

685

28.4.1 Overview of Flash Problems

686

28.4.2 Shocks and Fluid Instabilities

687

28.4.3 Computation of Reaction Products in Large Eddy Simulations Of Supernovae

693

28.5 Discussion

697

28.6 Conclusions

699

References

699

29 Validation in Weather Forecasting

703

29.1 Introduction

703

29.2 Setting the Scene

705

29.2.1 The Atmospheric Model: State of the Art

705

29.2.2 Intended Use of the Simulation Output

709

29.3 Validation Concepts

710

29.3.1 Idealized Tests for the Verification of the Dynamical Core

711

29.3.2 Validation of Parameterizations

717

29.3.3 Comparison to Observations

718

29.4 Uncertainty Estimation via Ensemble Forecasting

723

29.5 Discussion and Summary

724

References

726

30 Validation of Climate Models: An Essential Practice

729

30.1 Introduction

729

30.2 Climate Model Validation: Emergence of Definition and Community Practice

731

30.3 Definition of Terms

734

30.4 Model Construction, Observations, Assimilation: Roles in Validation

737

30.5 Validation of Climate Models in Practice

739

30.5.1 Independence, Transparency, and Objectivity: Basic Values of Verification and Validation

740

30.5.2 Identification of Independent Observational Data

741

30.5.3 Deliberative Validation and Expert Judgment

742

30.5.4 Quantitative Evaluation

745

30.6 Discussion

750

30.7 Conclusion

751

References

752

31 Validation of Agent-Based Models in Economics and Finance

755

31.1 Introduction

756

31.2 Agent-Based Computational Economics: Common Practices

756

31.2.1 The Development of a Typical Agent-Based Model

757

31.2.2 Inputs of Agent-Based Models

759

31.2.3 Outputs of Agent-Based Models

760

31.2.4 Relation Between Input and Output

761

31.3 Agent-Based Model Validation: Theoretical Framework

761

31.4 Agent-Based Model Validation: Literature Review

763

31.4.1 Calibration and Estimation

765

31.4.2 Validation

767

31.5 A New Wave of Validation Approaches

768

31.5.1 Validation As Replication of Time Series Dynamics

769

31.5.2 Validation as Matching of Causation

770

31.5.3 Global Sensitivity Analysis via Kriging Meta-Modeling

771

31.5.4 Parameter Space Exploration and Calibration via Machine-Learning Surrogates

772

31.6 Conclusions

773

References

774

Challenges in Simulation Model Validation

780

32 Validation and Equifinality

781

32.1 Introduction

781

32.2 The Origins of Equifinality Concepts

783

32.3 Equifinality as an Empirical Result

783

32.4 Equifinality in Model Calibration in the Inexact Sciences

787

32.5 Equifinality as Behavioural Model Ensembles

788

32.6 Defining a Model Likelihood

791

32.7 Equifinality and Model Validation in the Inexact Sciences

794

32.8 Discussion

795

References

796

33 Validation and Over-Parameterization—Experiences from Hydrological Modeling

800

33.1 Introduction

800

33.1.1 Over-Parameterization Terminology

801

33.1.2 Main Types of Hydrological Models

803

33.1.3 Peculiarities of Hydrological Models

806

33.2 Types of Validation in Hydrological Modeling

807

33.2.1 Validation Based on Independent Time Periods

807

33.2.2 Validation Based on Independent Catchments

808

33.2.3 Validation Based on Independent Variables

808

33.3 Conclusions—All Models Are Wrong, but Which Are Useful?

813

Textbox: Short Description of Catchment Hydrology

815

References

816

34 Uncertainty Quantification Using Multiple Models—Prospects and Challenges

824

34.1 Introduction

824

34.2 Challenges for Uncertainty Quantification in Climate Modeling

826

34.3 Uncertainty Quantification Using Model Ensembles

828

34.4 Problems with Model Democracy

830

34.5 Beyond Model Democracy

832

34.6 Illustration of Model Weighting for Arctic Sea Ice

834

34.7 Discussion and Open Issues

836

34.8 Conclusion

840

References

841

35 Challenges to Simulation Validation in the Social Sciences. A Critical Rationalist Perspective

845

35.1 Introduction

845

35.2 Illustrative Example: Models of Social Influence

849

35.3 Challenges to Model Validation

852

35.3.1 Obscure Concepts

852

35.3.2 Abundance of Latent Concepts

854

35.3.3 Representation of Time

856

35.3.4 Interplay of Multiple Processes

857

35.3.5 Context Characteristics Matters

859

35.4 Discussion

861

35.4.1 Compare Models and Identify Critical Assumptions!

861

35.4.2 Defend Your Assumptions!

862

35.4.3 Explore Model Scope and Its Boundaries!

863

35.4.4 More Validation!

863

References

864

36 Validation and the Uniqueness of Historical Events

868

36.1 A Brief History of Simulation’s Semantics

870

36.2 History

871

36.3 Challenges

873

36.4 Uses and Potentials of Simulations in History

877

36.4.1 Big-Data and Longue Durée History

877

36.4.2 Microhistorical Research and Simulation

878

36.4.3 Digital Games and Simulation Games

879

36.5 Conclusion and Outlook

880

References

882

Reflecting on Simulation Validation: Philosophical Perspectives and Discussion Points

885

37 What is a Computer Simulation and What does this Mean for Simulation Validation?

886

37.1 Introduction

887

37.2 Preliminaries

888

37.3 Computer Simulations and Experiments

890

37.3.1 Computer Simulations as Experiments

890

37.3.2 Computer Simulations as Modeled Experiments

892

37.4 Computer Simulations, Thought Experiments and Argumentation

895

37.5 Models and Simulations

900

37.6 Conclusions

904

References

906

38 How Do the Validations of Simulations and Experiments Compare?

909

38.1 Introduction

909

38.2 Epistemology and Methodology of Validation

911

38.2.1 The Concept of Validation

911

38.2.2 Epistemology and Methodology

916

38.3 Illustration: Validation of Experiments and Simulations in the Field of Evolution

920

38.4 Discussion and Conclusion

925

References

925

39 How Does Holism Challenge the Validation of Computer Simulation?

927

39.1 Introduction

927

39.2 Holism and Modularity—Two Counteracting Concepts

929

39.2.1 Modularity—The Rational Picture

929

39.2.2 Holism—A Multifaceted Challenge

932

39.3 The Challenge Arising from Parameterization and Tuning

933

39.4 The Challenge from Kluging

937

39.5 The Limits of Validation

941

References

943

40 What Types of Values Enter Simulation Validation and What Are Their Roles?

945

40.1 Introduction

945

40.2 The Framework

946

40.3 A Defense of Epistemic Values that Assess the Credibility of Simulation Results

949

40.4 Roles of Cognitive and Social Values in Assessing the Credibility of Simulation Results

951

40.4.1 Assistance in the Assessment of Performance in Terms of Epistemic Values

951

40.4.2 Determining Minimal Probabilities for Accepting or Rejecting a Hypothesis

952

40.5 Roles of Cognitive and Social Values in Assessments of the Usefulness of Simulation Models

954

40.5.1 Accounting for the Practicability of Simulation Models

955

40.5.2 Accounting for the Relevance of Simulation Models

956

40.6 Simulation Validation as a Multi-criteria Assessment

958

40.7 Summary and Conclusion

959

References

961

41 Calibration, Validation, and Confirmation

964

41.1 Introduction

964

41.2 Computer Simulations, and Calibration

965

41.2.1 Calibration, Verification, and Validation

965

41.2.2 Adequacy for Purpose

970

41.3 Predictivism

972

41.3.1 The Paradox of Predictivism

972

41.3.2 Bayesian Confirmation Theory V and the Problem of Old Evidence

974

41.3.3 Validation and Confirmation

977

41.4 The Problem of Old Evidence and Model Calibration

977

41.4.1 The Static Problem of Old Evidence

977

41.4.2 The Dynamic Problem of Old Evidence

978

41.4.3 An Argument for Predictivism

979

41.4.4 A Novel Bayesian Argument for Predictivism

981

41.5 Conclusion

983

Appendix

984

References

985

42 Should Validation and Verification be Separated Strictly?

988

42.1 Introduction

989

42.2 Preliminaries

990

42.2.1 Scientific Methods

990

42.2.2 Verification and Validation

991

42.3 The Distinction Between Verification and Validation

994

42.3.1 Verification as a Means of Validation of the Computational Model?

996

42.3.2 Verification as Means for Validation of the Conceptual Model?

999

42.4 Arguments Against a Clean Separation Between Verification and Validation

1003

42.4.1 The Separation Between Verification and Validation

1005

42.4.2 Verification and Mathematics

1008

42.5 Conclusions

1009

References

1010

43 The Multidimensional Epistemology of Computer Simulations: Novel Issues and the Need to Avoid the Drunkard’s Search Fallacy

1012

43.1 Introduction: Computer Simulations, a Revolutionary Epistemology?

1013

43.2 Methodological and Conceptual Preliminaries

1014

43.3 Dimensions of Computational Inquiries, or Where Things Can Go Wrong Epistemically

1017

43.3.1 The Production of Computational Results: Can We Control the Beast?

1018

43.3.2 The Reception and Post Hoc Assessment of Computational Results

1026

43.4 Should Epistemologists of Science Bother, After All?

1030

43.4.1 Target Models, Actually Investigated Models, and Failure

1030

43.4.2 The Valuable Redundancy Argument

1031

43.4.3 The Procrustean Objection

1031

43.4.4 The Absence of Data Argument and the Ostrich Strategy

1033

43.5 Conclusion and Moral

1034

References

1036

Index

1039