Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

New Directions in Thin Film Nanophotonics

New Directions in Thin Film Nanophotonics

Sreekanth K. V., Mohamed ElKabbash, Vincenzo Caligiuri, Ranjan Singh, Antonio De Luca, Giuseppe Stra

 

Verlag Springer-Verlag, 2019

ISBN 9789811388910 , 178 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

96,29 EUR

Mehr zum Inhalt

New Directions in Thin Film Nanophotonics


 

Preface

6

Contents

8

Development and Applications of Metal/Dielectric Resonant Cavity-Based Thin Film Structures

12

1 Perfect Light Absorption in Thin and Ultra-Thin Films and Its Applications

13

1.1 Introduction

13

1.2 Approaches to Realize Perfect Light Absorbers

14

1.3 Lithography-Free Perfect Light Absorption in Critically Coupled, Interference Based, Thin and Ultrathin Films

16

1.4 Designer Perfect Light Absorption in Thin Film Absorbers

19

1.4.1 Designer Wavelength Range

19

1.4.2 Designer Absorption Bandwidth

21

1.4.3 Designer Profile of Optical Losses

23

1.4.4 Designer Perfect Light Absorption Angle

24

1.5 Iridescence Properties of Thin-Film Interference-Based Light Absorbers

25

1.6 Thermally Induced Perfect Light Absorption in Low Reflectance Metals

27

1.7 Applications

31

1.7.1 Structural Colors Using Thin-Film Light Absorbers

31

1.7.2 Hydrogen Gas Sensing Using Thin-Film Light Absorbers

33

References

35

2 Realization of Point-of-Darkness and Extreme Phase Singularity in Nanophotonic Cavities

38

2.1 Topological Darkness

38

2.2 Lithography-Free Nanophotonic Cavities

39

2.3 Singular Phase at the Point-of-Darkness

41

2.4 Phase-Sensitive Biosensing

44

2.5 Microfluidics Integrated Cavities

47

2.6 Real-Time Sensing of Small Biomolecules

49

References

52

3 Phase Change Material-Based Nanophotonic Cavities for Reconfigurable Photonic Device Applications

54

3.1 Phase Change Material-Tuned Photonics

54

3.2 Tunable Color Filters Based on Multilayer Stacks

56

3.3 Tunable Perfect Absorption

58

3.4 Tunable Singular Phase at the Point-of-Darkness

60

3.5 Enhanced and Tunable Goos-Hanchen Shift at the Point-of-Darkness

63

References

66

4 Sub-wavelength Nanopatterning Using Thin Metal Films

68

4.1 Laser Interference Lithography

68

4.2 Evanescent Wave Interference Lithography

69

4.3 Plasmonic Lithography

71

4.4 Theoretical Analysis of Surface Plasmon Interference

72

4.5 Numerical Analysis of Surface Plasmon Interference

78

4.6 Nanopatterning Based on Multiple Beams Surface Plasmon Interference

80

References

86

Development and Applications of Multilayered Hyperbolic Metamaterials

88

5 Dielectric Singularities in Hyperbolic Metamaterials

89

5.1 Introduction

89

5.2 Effective Medium Theory and HMMs Dispersion Relation

90

5.3 Design of the Epsilon-Near-Zero-and-Pole Condition

94

5.4 Far-Field Analysis and Scattering Parameters of Ag/ITO ENZP HMM

97

5.5 Light Propagation at the ENZP Wavelength and Supercollimation Effect

99

5.6 ENZP Perfect Lens

101

5.7 Three Materials ENZP HMMs

103

References

108

6 Resonant Gain Singularities in Hyperbolic Metamaterials

110

6.1 Resonant Gain Epsilon-Near-Zero and Pole Condition

110

6.2 Design of the Gain Blend

112

6.2.1 Step 1—Selecting a High Refractive Index Dielectric

112

6.2.2 Step 2—Selecting a Dye with Emission Peaked at 426 nm

113

6.2.3 Step 3—Calculating the Value of ?d'' for Which ? '' Shows a Pole at 426 nm

113

6.2.4 Step 4 and 5—Calculation of the Concentration overlineN0 of Dye Molecules and of the “Gain Blend” Effective Permittivity

114

6.2.5 Step 6—Verifying the Presence of the “Resonant Gain Singularity” in ? '' at the ENZP Wavelength

116

6.3 Supercollimation and Light Amplification in the RG-HMM

116

6.4 Self-Amplified Perfect Lens (APL)

119

References

121

7 Metal/Photoemissive-Blend Hyperbolic Metamaterials for Controlling the Topological Transition

123

7.1 Introduction

123

7.2 Design, Fabrication and Characterization of the Thermo-Responsive Blend

124

7.3 Design, Fabrication and Characterization of the HMM Embedding the Thermo-Responsive Blend

128

7.4 Thermal Tunability of the Optical and Photophysical Response of the HMM

130

References

134

8 Guided Modes of Hyperbolic Metamaterial and Their Applications

135

8.1 Guided Modes of Hyperbolic Metamaterials

135

8.2 Excitation of Guided Modes of HMM

136

8.2.1 Using Grating Coupling Technique

136

8.2.2 Using Prism Coupling Technique

142

8.3 Applications of Grating-Coupled HMMs

145

8.3.1 Ultrasensitive Plasmonic Biosensing

145

8.3.2 Spontaneous Emission Enhancement

152

8.3.3 Multiband, Broad- and Narrow-Band Perfect Absorption and Absorption-Based Plasmonic Sensors

157

References

162

9 Graphene and Topological Insulator-Based Active THz Hyperbolic Metamaterials

165

9.1 Introduction

165

9.2 Graphene-Based Hyperbolic Metamaterials

166

9.3 Van der Waals Superlattice-Based Hyperbolic Metamaterials

168

9.4 Negative Refraction in THz Hyperbolic Metamaterials

169

9.4.1 Negative Refraction in Graphene-Based HMMs

170

9.4.2 Negative Refraction in Topological Insulator-Based HMMs

171

9.5 Excitation of BBP Modes of Graphene-Based HMMs

173

9.6 Active Hyperbolic Metamaterials Based on Topological Insulator and Phase Change Material

175

References

177