Suchen und Finden

Titel

Autor

Inhaltsverzeichnis

Nur ebooks mit Firmenlizenz anzeigen:

 

Process Variations in Microsystems Manufacturing

Process Variations in Microsystems Manufacturing

Michael Huff

 

Verlag Springer-Verlag, 2020

ISBN 9783030405601 , 531 Seiten

Format PDF, OL

Kopierschutz Wasserzeichen

Geräte

149,79 EUR

Mehr zum Inhalt

Process Variations in Microsystems Manufacturing


 

Preface

7

Acknowledgments

10

Contents

11

Chapter 1: Introduction

18

1.1 From Vacuum Tubes to Microsystems

18

1.2 MEMS Microsystems

19

1.3 Some of the Important Attributes of MEMS Microsystems

21

1.4 Organization of This Book

23

References

25

Other Information

25

Chapter 2: An Overview of MEMS Microsystems

26

2.1 Introduction

26

2.2 Microsensors and Microactuators

26

2.2.1 MEMS Microsensors

27

2.2.1.1 Resistive

27

2.2.1.2 Piezoresistive

29

2.2.1.3 Capacitive

30

2.2.1.4 Piezoelectric

32

2.2.1.5 Tunneling

33

2.2.1.6 Magnetic

35

2.2.1.7 Photoconduction

36

2.2.1.8 Thermoelectric

37

2.2.1.9 Diodes

38

2.2.2 MEMS Microactuators

40

2.2.2.1 Electrostatic

40

2.2.2.2 Piezoelectric

41

2.2.2.3 Thermal

43

2.2.2.4 Shape-Memory Alloys (SMA)

44

2.2.2.5 Magnetic

45

2.3 Microsystems Manufacturing Processes

47

2.4 Batch Fabrication

49

2.5 Some Basics of Microsystems Manufacturing

51

2.5.1 Differences Between IC and MEMS Manufacturing

52

2.5.2 Microsystems Feature Sizes

54

2.6 Some Material Basics Regarding Semiconductors and Silicon

55

2.7 Summary

60

References

60

Chapter 3: Microsystems Manufacturing Methods: Integrated Circuit Processing Steps

62

3.1 Introduction

62

3.2 Basic IC Processing Steps

64

3.2.1 Thin-Film Growth and Deposition Techniques

64

3.2.1.1 Thermal Oxidation

64

3.2.1.2 Chemical Vapor Deposition

69

3.2.1.2.1 Atmospheric Chemical Vapor Deposition (ACVD)

72

3.2.1.2.2 Low-Pressure Chemical Vapor Deposition (LPCVD)

73

3.2.1.2.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD)

75

3.2.1.2.4 Atomic Layer Deposition (ALD)

77

3.2.1.3 Physical Vapor Deposition (PVD)

79

3.2.1.3.1 Evaporation

79

3.2.1.3.2 Sputtering

82

3.2.2 Impurity Doping

84

3.2.2.1 Thermal Diffusion

85

3.2.2.2 Ion Implantation

88

3.2.3 Photolithography

93

3.2.4 Rapid Thermal Anneal (RTA)

98

3.2.5 Planarization

100

3.2.6 Etching

102

3.2.7 Clean and Strip

109

3.3 Summary

110

References

111

Chapter 4: Microsystems Manufacturing Methods: MEMS Processes

115

4.1 Introduction

115

4.2 MEMS Substrate Material Types

116

4.3 MEMS Materials Deposition Processing Steps

117

4.3.1 MEMS Thin-Film Materials Deposited on IC Equipment

117

4.3.1.1 Thin-Film Semiconductors

117

4.3.1.1.1 Silicon (Si)

117

4.3.1.1.2 Silicon-Germanium (SiGe)

119

4.3.1.1.3 Germanium (Ge)

120

4.3.1.1.4 Silicon Carbide (SiC)

120

4.3.1.1.5 Diamond

121

4.3.1.2 Metals

122

4.3.1.3 Thin-Film Metal Oxides

124

4.3.1.4 Dielectrics

125

4.3.1.4.1 Silicon Nitride (SiN)

125

4.3.1.4.2 Silicon Dioxide (SiO2)

126

4.3.1.5 Polymers

127

4.3.1.5.1 SU-8

127

4.3.1.5.2 PDMS

128

4.3.1.5.3 Polyimide

128

4.3.1.6 Ceramics

129

4.3.1.7 Special MEMS Materials

130

4.3.1.7.1 Piezoelectric Materials

130

4.3.1.7.2 Shape-Memory Alloys (SMAs)

132

4.3.1.7.3 Magnetic Materials

133

4.3.2 MEMS Specific Processing Steps

134

4.3.2.1 Electrochemical Deposition

134

4.3.2.2 MEMS Lithography

136

4.3.2.2.1 Contact Photolithography

137

4.3.2.2.2 Front-to-Back Contact Photolithography

137

4.3.2.2.3 Direct-Write Laser Photolithography

138

4.3.2.2.4 Grayscale Photolithography

138

4.3.2.2.5 X-Ray Lithography

140

4.3.2.2.6 E-Beam Lithography

140

4.3.2.2.7 Lithography on Large Topography

141

4.3.2.2.8 Lift-Off Patterning

142

4.3.2.2.9 Image Reversal Photoresists

143

4.3.2.2.10 Photolithography on Transparent Substrates

144

4.4 MEMS Micromachining Methods

144

4.4.1 Bulk Micromachining

145

4.4.1.1 Wet Chemical Etchants

145

4.4.1.1.1 Isotropic Wet Chemical Etchants

146

4.4.1.1.2 Anisotropic Wet Chemical Etchants

147

4.4.1.2 Gas-Phase Isotropic Chemical Etchants

153

4.4.1.3 Deep Reactive Ion Etching (DRIE) of Silicon

154

4.4.1.4 Deep, High-Aspect Ratio RIE of Fused Silica, Quartz, and Glass

157

4.4.1.5 Deep, High-Aspect Ratio RIE of Silicon Carbide (SiC)

159

4.4.2 Surface Micromachining

160

4.4.3 Wafer Bonding

163

4.4.4 LIGA

166

4.4.5 Hot Embossing

168

4.4.6 Other MEMS Micromachining Technologies

169

4.4.6.1 Electro-Discharge Micromachining

169

4.4.6.2 Laser Micromachining

169

4.4.6.3 Focused Ion Beam (FIB) Micromachining

170

4.4.6.4 Electrochemical Fabrication (EFAB)

171

4.5 Summary

171

References

173

Chapter 5: Metrology for Microsystems Manufacturing

188

5.1 Introduction

188

5.2 Fabrication Metrology Equipment and Methods

189

5.2.1 Optical Microscopy

189

5.2.2 Fluorescence Microscopy

192

5.2.3 Confocal Microscopy

194

5.2.4 Stereomicroscopy

195

5.2.5 Scanning Electron Microscope (SEM)

195

5.2.6 Automated Scanning Electron Microscope

198

5.2.7 Thin-Film Thickness

200

5.2.7.1 Interferometry

200

5.2.7.2 Ellipsometry

202

5.2.7.3 Stylus Profilometry

204

5.2.8 Four-Point Probe

206

5.2.9 Thin-Film Stress Measurement

208

5.2.10 Particle Measurements

212

5.2.11 Noncontact Optical Profilometry

213

5.2.12 Wafer Bonding Inspection

215

5.3 Specialized Metrology Equipment and Methods

218

5.3.1 Focused Ion Beam

218

5.3.2 Scanning Tunneling Microscopy (STM)

221

5.3.3 Atomic Force Microscopy (AFM)

223

5.3.4 Energy-Dispersive X-Ray Spectroscopy (EDXS)

225

5.4 Highly Specialized Material Analysis Methods

227

5.5 Electrical Material Properties Test Methods

232

5.5.1 Junction Depth Measurements

232

5.5.2 Spreading Sheet Resistance

233

5.6 Summary

236

References

238

Chapter 6: Microsystems Material Properties

241

6.1 Introduction

241

6.2 Residual Stress and Young´s Modulus

243

6.2.1 Young´s Modulus

244

6.2.2 Residual Stress

246

6.3 Mechanical Test Structures

248

6.3.1 Test Structures for Young´s Modulus

248

6.3.2 Thin-Film Residual Stress Test Structures

251

6.3.3 Stress Gradients

255

6.3.4 Tests for Other Mechanical Material Properties

256

6.4 Electrical Test Structures

257

6.5 Thin-Film Material Properties

264

6.5.1 Thermal SiO2

264

6.5.2 LPCVD Polysilicon

265

6.5.3 LPCVD Silicon Dioxide (SiO2)

269

6.5.4 LPCVD Silicon Nitride (SiN)

271

6.5.5 PECVD Silicon Dioxide (SiO2)

273

6.5.6 PECVD Silicon Nitride (SiN)

275

6.5.7 PECVD Polycrystalline Silicon

277

6.5.8 Evaporative Physical Vapor Deposition

277

6.5.9 Sputter Physical Vapor Deposition

280

6.5.9.1 Sputter-Deposited Silicon

280

6.5.10 Electrochemical Deposition

281

6.6 Summary

283

References

283

Chapter 7: Microsystems Process Integration, Testing, and Packaging

288

7.1 Introduction

288

7.2 What Is Process Integration?

289

7.3 How Is Process Integration Performed?

291

7.4 What Is an Integrated MEMS Process Sequence?

296

7.5 Examples of MEMS Microsystems Process Technologies

296

7.5.1 PolyMUMPS Process Technology

297

7.5.1.1 Some Important Elements About PolyMUMPS

302

7.5.2 Digital Light Processor (DLP) Technology

304

7.5.2.1 Some Key Elements About the DLP Process Technology

307

7.6 Process Integration and Manufacturing Variations

308

7.6.1 Causes of Device Parameter Variations in Process Sequences

308

7.6.2 An Example of Parameter Variations for a Process Technology: The PolyMUMPS Process

311

7.7 Microsystems Design Rules

314

7.7.1 MEMS Microsystems Design Rules

314

7.7.2 Design Rule Checking

316

7.8 MEMS Microsystems Testing

317

7.8.1 Example of MEMS Microsystems Testing

318

7.8.2 MEMS Microsystems Device Trimming

319

7.8.3 MEMS Microsystems Calibration

320

7.9 MEMS Microsystems Packaging

320

7.10 Summary

323

References

323

Chapter 8: Device Parameter Variations in Microsystems Manufacturing

325

8.1 Introduction

325

8.2 Manufacturing Variations

326

8.3 Measurement of Manufacturing Variations

327

8.4 Bias and Random Variations

328

8.5 Resolution, Precision, and Accuracy

331

8.6 Comparison of the Dimensional Parameter Variations in Manufacturing Technologies

333

8.7 The Nature of Random Parameter Variations

337

8.8 Discrete Probability Distributions

354

8.9 Some Examples of Statistical Analysis of Variations

357

8.9.1 Confidence Interval for Manufacturing Large Samples (N > 30)

357

8.9.2 Confidence Interval for Small Samples (N < 30)

359

8.9.3 Hypothesis Testing for Small Sample Sizes (N < 30)

359

8.9.4 Hypothesis Testing of Goodness of Fit

363

8.9.5 Sample Size Required to Estimate Population Mean

365

8.9.6 Example of Use of the Hypergeometric Distribution

366

8.9.7 Example of Poisson Distribution

366

8.10 Impact of Physics and Random Parameter Variations

367

8.11 Combination of Both Bias and Random Manufacturing Parameter Variations

371

8.12 Device Output Behavior Variation Due to Parameter Variations

373

8.13 Example of Device Output Behavior Variation Analysis

375

8.14 Simplified Variation Analysis

382

8.15 Important Generalizations

384

8.16 Review of Methods for Variation Analysis

387

8.16.1 Worst-Case Variation Analysis

389

8.16.2 Non-worst-Case Variation Analysis

393

8.16.2.1 Non-sampling, Non-worst-Case Variation Analysis

393

8.16.2.2 Monte Carlo Variation Analysis

394

8.17 Summary

398

References

399

Chapter 9: Yield Analysis and Quality Assurance and Control Methods Used in Microsystems Manufacturing

400

9.1 Introduction

400

9.2 Importance of Manufacturing Yield

401

9.3 Definitions of Microsystems Manufacturing Yield

402

9.4 Microsystems Manufacturing Yield Monitoring and Analysis

404

9.4.1 Functional Yield

405

9.4.1.1 Functional Yield Models Based on Point Defects

406

9.4.1.2 Functional Yield Measurement Tools

410

9.4.2 Parametric Yield

411

9.4.2.1 Parametric Yield Model

411

9.4.2.2 An Example of a Parametric Yield Model

419

9.5 Yield Estimations Using Sampling Methods

421

9.5.1 Yield Estimation Using Regionalization

422

9.5.2 Yield Estimation Using Simplicial Approximation

425

9.5.3 Monte Carlo Yield Estimation

428

9.5.3.1 Confidence Intervals for Monte Carlo Yield Analysis

429

9.6 Statistical Process Control (SPC)

431

9.6.1 Control Charts for Variables

435

9.6.2 Control Charts for Attributes

440

9.6.3 Identification of Non-random Patterns in Control Charts

445

9.6.4 Process Capability

446

9.6.5 Rational Subgroups

450

9.6.5.1 Sampling Methods for Rational Subgroups

454

9.7 Summary

456

References

456

Chapter 10: Managing Parameter Variations in Microsystems Device Design

458

10.1 Introduction

458

10.2 Relationships Between Process Sequence and Parameter Variations

460

10.3 Overview of MEMS Device Design and Modeling

462

10.4 Example of the Design Levels for a MEMS Device

465

10.5 MEMS Design for Manufacturability

469

10.5.1 MEMS Device Design for Manufacturability

470

10.5.2 MEMS Process Sequence Design for Manufacturability

471

10.5.3 MEMS Microsystems Partitioning

473

10.6 Overview of MEMS Development

474

10.7 MEMS Design for Manufacturability Recommendations

477

10.8 Managing Device Parameter Variations in MEMS Design

478

10.8.1 Design Centering

480

10.8.2 Parameter Variation Reduction

484

10.8.3 Device Size Scaling

486

10.8.4 Acceptance Range Increase

488

10.8.5 Best Practices in Layout Design

489

10.8.6 Further Comments About MEMS Design Methods

496

10.9 MEMS Design in Multidimensional Spaces

497

10.10 MEMS Design Methods Using Monte Carlo Techniques

502

10.10.1 Design Centering Using Monte Carlo

505

10.11 Sensitivity Analysis

509

10.11.1 Generalized Sensitivity Analysis Methods

512

10.11.2 Optimizing Manufacturing Cost Function

516

10.12 Summary

517

References

517

Index

519